Stephen Tapp

Architect/P.E.

2330 East Madison Street Seattle, Washington 98112 (206) 320-0534 (206) 459-5151

P.O. Box 1413 Puunene, Maiu, Hawaii

Structural Calculations

WIND LOAD GOVERNS LATERAL DESIGN

for

Petrie Garage/Assessory Dwelling Unit

2431 60th Avenue SE Mercer Island, Washington 98040

Date: February 2020 Project: T20B3

Building Code Reference: 2015 IBC

Loading Requirements

ASCE 7-16

Codes

2015 IBC
AISC/ASD Sixteenth Edition
ACI 318-16
NDS 2015
SEAW Rapid Solutions Methodology for Wind Design

Wind Design

Wind Speed = 85 mph Wind Exposure = 'B'

Soil Loads (assumed)

Passive pressure = 300 psf
Assumed Soil density = 130 pcf
Assumed soil Bearing Pressure = 2500 psf
Friction capacity is a coefficient of .4
Factor of safety = 1.5

Building Loads

Snow Load = 25 psf

Roof (DL) = 15 psf

Exterior Wall (DL) = 15 psf

Interior Wall (DL) = 7.5 psf

Main/Upper Floor(DL) = 12 psf, LL = 40 psf

Main Exterior Deck Load = 60 psf (if less than 100 square feet)

100 psf (if more than 100 square feet)

Corridors, Stairs, Exits (LL) = 100 psf

STEPHEN TAPP

ARCHITECT/P.E. 2330 East Madison Street SEATTLE, WA 98112 (206) 320-0534

JOB	
SHEET NO.	
CALCULATED BYSTT	DATE
CHECKED BY	DATE
SCALE	

SHEAR WALL SCHEDULE - 2015 IBC

WALL SHEATHING TO BE 1/2" (C-D) STRUCTURAL 1, 24/0

ROOF SHEATHING TO BE 1/2" (C-D) STRUCTURAL 1, 32/16

USE 10d COMMON NAILS (.148"Ø X 3" LONG)

ALL FRAMING MEMBERS TO BE MAXIMUM 19% MOISTURE CONTENT

PLAN	WALL	NAIL	PANE	L NAIL SE	PACING		REQUIRED	ANCHORS	ALLOWABLE UNIT
SYMBOL	TYPE	SIZE	PANEL EDGES	FIELD STUDS	TOP/BTM PLATES	BLK'G	PR TR SILL	BTM PLATE	SHEAR (PLF)
6	P1-6"	10d	6"	12"	6"	2X6(4)	½"Ø @ 48"	16d @ 6"	262(HF), 320(DF)
$\langle 4 \rangle$	P1-4"	10d	4"	12"	4"	3X6(4)	%"Ø @ 32"	(2) 16d @ 8"	348(HF), 425(DF)
3	P1-3"	10d	3"	12"	3"	3X6(4)	½"Ø @ 24"	(2) 16d @ 6"	525(HF), 640(DF)
2	P1-2"	10d	2"	12"	2"	3X6(4)	¾"Ø @ 24"	(2) 16d @ 5"	599(HF), 730(DF)
2-3	P2-3"	10d	3'	12"	3"	3X6(4)	¾"Ø @ 16"	(4) 16d @ 6"	1050(HF),1280(DF)

Shear Wall Notes

- 1. P-1 INDICATES PLYWOOD ON ONE SIDE OF SHEAR WALL ONLY.
- 2. P-2 INDICATES PLYWOOD ON TWO SIDES OF SHEAR WALL. FRAMING MEMBES SHALL BE 3X. OFFSET PANEL JOINTS TO FALL ON DIFFERENT STUDS.
- 3. PLYWOOD MAY BE INSTALLED EITHER HORIZONTALLY OR VERTICALLY ON HEM-FIR, OR DOUG FIR STUDS.
- 4. FOR NAILING AT 4", 3", 2" ON CENTER, USE 3X FRAMING MEMBERS AT ALL PANEL EDGES. STAGGER FASTENERS AT ALL PANEL JOINTS.
- 5. FOR NAILING AT 4",3",2" ON CENTER USE P.T. 3X SILL AT FOUNDATION.
- 6. SOLID BLOCK ALL PANEL EDGES WITH FULL DEPTH BLOCKING.
- 7. USE 10d. COMMON NAILS FOR SHEAR WALL FASTENERS.
- 8. NAILS MUST BE FLUSH DRIVEN WITH THE DIAPHRAGM SURFACE.
- 9. ANCHOR BOLTS TO HAVE A MINIMUM 3"X3"X1/4" PLATE WASHERS.
- 10. FINGER JOINTED STUDS ARE NOT TO BE USED AT HOLDOWN LOCATIONS.
- 11. NAILS FOR PANEL EDGES SHALL BE 10d COMMON(0.148 X 3" LONG). NAILS FOR PLATES SHALL BE 12d COMMON(0.148X 3 1/4" LONG).
- 12. WHERE BOTTOM PLATE NAILING REQUIRES (4) NAILS AT A SPECIFIC SPACING, BLOCK FLOOR SPACE BELOW THE SOLE PLATE CONSISTING OF A MINIMUM OF TWO FRAMING MEMBERS. NAILING PATTERN SHALL CONSIST OF TWO ROWS IN EACH MEMBER OFFSET 1/2" AND STAGGERED.
- 13. DO NOT INSTALL FLOOR DIAPHRAGM NAILING OVER BOTTOM SILL NAILING.
- 14. ALL STUDS TO BE 2X HEM-FIR OR BETTER.

Earthquake Design Data for New Expansion Only

1) Occupancy Category = I Occupancy Importance Factor Ie = 1

ASCE 7-10 Table 1-

ASCE 7-10 Table 11.5-1

Seismic Use Group = I

2) Mapped Spectoral Response Accelerations ASCE 7-10 Fig 22-1,

Latitude = 47.59 deg North

Longitude = -122.25 deg West

Location = Mercer Island Wa. 98040

Maximum Ground Motions, 5% Damping, from USGS Maps

Ss = 1.378 g, 0.2 sec response

 $S_1 = .531$ g, 1.0 sec response

3) Site Classification

ASCE 7-10 Table 20-3.1

Assumed

D

4) Site Coefficients

ASCE Table 7-10 11-4.1.

Table 11-4.2

 $F_a = 1$ $F_v = 1.5$

5) Maximum Considered Earthquake Acceleration ASCE 7-10 11.4.3

$$S_{MS} = F_a * S_s = 1.378$$

$$S_{M1} = F_V * S_1 = .796$$

6) Design Spectral Acceleration

ASCE 7-10 11.4.4

$$S_{DS} = S_{MS} * 2/3 = .919$$

$$S_{D1} = S_{M!} * 2/3 = .531$$

7) Seismic Design Category D

ASCE 7-10 Table11-6.1,

Table 11-6.2

8) Basic Seismic Force Resisting System ASCE 7-10 Table 12-2.1

Bearing Wall Systems

Light-framed walls sheathed w/wood structural panels rated for shear resistance

Response Modification Factor (R) =6.5

System Over Strength Factor 'Wo" = 3.00

Deflection Amplification factor 'Cd" = 4.00

- 9) Analysis Procedure ASCE 7-10 12.6 The Equivalent Lateral Force Procedure ASCE 7-10 12.8
- 10) Building Period ASCE 7-10 12.8.2

Structure Type for Building Period Calculation

All Other Structural Systems

"
$$Ct$$
" value = .02

ASCE 7-10 Table 12.8-2

"x" value =
$$.75$$

$$h_n' = 21'$$

"Ta" = Ct*(hn^x) Approx. Fundamental Period .196 **ASCE 7-10 Eq. 12.8-7**

"Cu" = 1.4 ASCE 7-10 Table 12.8-1 Per ASCE 7-05 12.8.2 True Fundamental Period < (1.4)(.196) = .27

11) "Cs" Response Coefficient

ASCE 7-10 12.8.1.1

$$S_{DS} = .919$$

$$S_{D1} = .531$$

$$S_1 = .531 g$$

$$R' = 6.5$$

"I" =
$$1.00$$

(Eq. 12.8.2)
$$C_s = S_{DS}/(R/1) = .141$$
 Preliminary C_s

(Eq. 12.8-3)
$$C_s = S_{D1}/T_a(R/1) = .30$$
 Need Not Exceed

(Eq. 12.8-5)
$$C_s = .01$$
 Shall no be less than

(Eq. 12.8-6)
$$C_s = .5 S_1/(R/1) = .0 Shall not be less than$$

Therefore $C_s = .132$

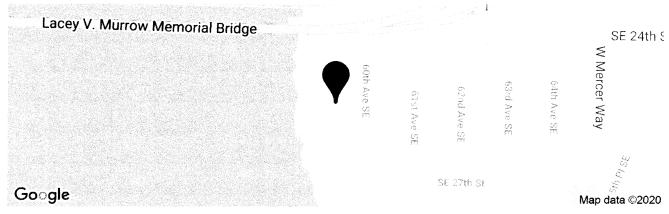
- 12) Building Weight "W" (from hand calculated sheet) = $47^{\text{ K}}$
- 13) Base Shear

ASCE 7-10 12.8-1

$$V = C_S *W$$

(.14) * 47^K = 6.58 ^K

14) Vertical Distribution of Seismic Forces


See Spread Sheet

OSHPD

2431 60th Ave SE, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5881824, -122.2536294

Date

PGAd

0.933

0.963

Design Code Reference Document

Risk Category

2/18/2020, 2:55:21 PM

ASCE7-10

Site Clas	s	D - Stiff Soil
Туре	Value	Description
S_S	1.378	MCE _R ground motion. (for 0.2 second period)
S ₁	0.531	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.378	Site-modified spectral acceleration value
S _{M1}	0.796	Site-modified spectral acceleration value
S_{DS}	0.919	Numeric seismic design value at 0.2 second SA
S _{D1}	0.531	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	D	Seismic design category
Fa	1	Site amplification factor at 0.2 second
F_{v}	1.5	Site amplification factor at 1.0 second
PGA	0.567	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.567	Site modified peak ground acceleration
T_L	6	Long-period transition period in seconds
SsRT	1.378	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.431	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	2.449	Factored deterministic acceleration value. (0.2 second)
S1RT	0.531	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.567	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.004	Factored deterministic acceleration value. (1.0 second)

Factored deterministic acceleration value. (Peak Ground Acceleration)

Mapped value of the risk coefficient at short periods

STEPHEN TAPP

ARCHITECT/P.E. 2330 East Madison Street SEATTLE, WA 98112 (206) 320-0534

DOB PETRIE	GARAGE /ADU 7
SHEET NOSTT	OFOF
CHECKED BY	DATE

CHECK	BUILDING LIBIGHT GARAGE/ADU	
	UPPER ROOF (597)(1.05)(15) UPPER EXT WALL (110)(15)(8) UPPER INT WALL (111/2)+(22)(2)(1.7)(75)(8) UPPER PLOOF (534)(15) UPPER DEUR (45)(15)	94037 13200 6732 8010 675
	MAIN PAT HALL (105)(15)(9)(.5) MAIN INT HALL (0)	1905 7088

TOTAL = 47,013

Seismic Load Analysis

2015 IBC

Project: Petrie Garage/ADU Architect: Leif Anderson

Job #: T20B3

	Snow(DL)=	25 pst
$V = C_s^*(W)$	Roof (DL)=	15 psf
V= (W)* 0.14	Ext. Wall(DL)=	15 psf
V = 6580.35	Int Wall(DL)=	7.5 psf
V=E*.7 4606.245	Floor(DL)=	15 psf
Des. Cat. D	Deck(DL)=	15 psf
I = 1		

 $C_s = 0.14$ R = 6.5

W = 47002.5 Dead weight of structure

	Area	Ln ft	Height	Weight	Total
Upper Roof =	627			15	9405 lbs
Upper Floor Exterior Walls (wood)=		110	8	15	13200
Upper Floor Exterior Walls (mas.)=				80	0
Upper Floor Interior Walls =		112	8	7.5	6720
Upper Floor =	534			15	8010
Upper Exterior Deck =	45			15	675
Upper Green Roof =				0	0
Main Roof =	127			15	1905
Main Exterior Walls (wood) =		105	4.5	15	7087.5
Main Exterior Walls (mas.) =					0
Main Interior Walls =				7.5	0
Main Floor =				15	0
Main Deck =				15	0
Lower Floor Exterior Walls (wood) =			5	15	0
Lower Floor Interior Walls =			5	7.5	0
W(total) =		•		•	47002.5

Seismic Load Distribution

Level	Weight	Height	Wt*ht	F	F * .7
Upper Roof			0	0	0
Main Roof	24093.75	22	530062.5	2162.076	1513.453
Main Floor	135400	8	1083200	4418.274	3092.792
Total	159493.8		1613263	6580.35	4606.245

Job : Petrie Residence
Architect: Leif Anderson
Job #: T20B3
Date: Feb-20

<u>Seismic Loading Only</u> Garage

Level: Upper Roof Diaphragm
Direction: Side - Side
Vseismic @ Level= 1513
Vseismic total= 1513
Vseismic with redundancy=
Total Load to be resolved (#)= 1513
Grid C A.2

24

Span(FT.)

Wind load(#/LF)

Seismic load(#/LF) 63.04167 63.04167 63.04167 63.04167 63.04167 63.04167 63.04167

Load#1(LB) Load#2(LB) Load#3(LB)

P(wind+L1,L2,L3)=0 0 0 0 0 0 0 0 0 0 P(seismic+L1,L2,L3)= 756.5 756.5 0 0 0 0 Wall Length(FT.) 8.16 20 Unit Shear(#/LF) 92.70833 37.825 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Wall Type P1-6" P1-6" Area Ab(sq.ft.) 500 500 0.612745 0.25 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! shear ratio r= 0.540295 -1.57771 #DIV/0! #DIV/0! #DIV/0! Redundancy factor #DIV/0! #DIV/0! #DIV/0! 2.11 10 Section Length(FT) Panel Height(FT) 6.7 9 0 (M)from upper level 0 OTM(#') 1310.618 3404.25 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 10 Panel Length(LF) 2.11 Panel Wt.(#/LF) 135 135 Wt. on Panel(#/LF) 100 100 40 40 40 40 40 Reduction(%) 40 40 40 RM(#') -313.8731 -7050 0 0 0 0 0 0 #DIV/0! #DIV/0! #DIV/0! Resultant(#') 996.7447 -3645.75 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Uplift @ Panel 472.3908 -364.575 #DIV/0! Edge(#) Simpson' cmstc16 n/a

strap

Restraint

0

Shear Wall Analysis

Job : Petrie Residence
Architect: Leif Anderson
Job #: T20B3
Date: Feb-20

Seismic Loading OnlyGarage

Level: Upper Roof Diaphragm
Direction: Front - Rear
Vseismic @ Level= 1513
Vseismic total= 1513
Vseismic with redundancy=
Total Load to be resolved (#)= 1513
Grid 1.2 2
Span(FT.) 23

0

Wind load(#/LF)

Seismic load(#/LF) 65.78261 65.78261 65.78261 65.78261 65.78261 65.78261 65.78261

0

0

0

0

0

0

Load#1(LB) Load#2(LB) Load#3(LB)

P(wind+L1,L2,L3)=

0 0 0 0 0 0 P(seismic+L1,L2,L3)= 756.5 756.5 Wall Length(FT.) 18.5 16.33 Unit Shear(#/LF) 40.89189 46.32578 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! P1-6" Wall Type P1-6" 500 Area Ab(sq.ft.) 500 shear ratio r= 0.306185 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.27027 -0.9212 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Redundancy factor -1.309381 18.5 16.33 Section Length(FT) Panel Height(FT) 9 9 0 0 (M)from upper level OTM(#') 6808.5 6808.5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 16.33 Panel Length(LF) 18.5 Panel Wt.(#/LF) 135 135 Wt. on Panel(#/LF) 100 100 Reduction(%) 40 40 40 40 40 40 40 40 RM(#') -24128.63 -18800.2 0 0 0 0 0 0 Resultant(#') -17320.13 -11991.7 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Uplift @ Panel -936.223 -734.333 #DIV/0! #DIV/0! #DIV/0! #DIV/0! Edge(#) Simpson' n/a n/a Restraint

0

0

Shear Wall Analysis

Job : Petrie Residence
Architect: Leif Anderson
Job #: T20B3
Date: Feb-20

Seismic Loading Only

Level: Upper Fl'r/Main Roof Diaphragm

Direction: Side - Side

Vseismic @ Level= 3093 Vseismic total= 4606

Vseismic with redundancy=

Total Load to be resolved (#)= 4625
Grid B A

Grid B Span(FT.) 20

Wind load(#/LF)
Seismic load(#/LF) 154.65 154.65 154.65 154.65 154.65 154.65

Garage

Load#1(LB) 766 766

Load#2(LB) Load#3(LB)

0 P(wind+L1,L2,L3)=766 766 0 0 0 0 P(seismic+L1,L2,L3)= 0 0 0 0 0 2312.5 2312.5

Wall Length(FT.) 5.2 24.5

Unit Shear(#/LF) 444.7115 94.38776 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Wall Type P1-3" P1-6"

Area Ab(sq.ft.) shear ratio r= 0.965505 0.204923 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Redundancy factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

 Section Length(FT)
 2.3
 24.5

 Panel Height(FT)
 5
 9

 (M)from upper level
 3851
 -7292

OTM(#') 8965.183 13520.5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Panel Length(LF) 2.3 24.5
Panel Wt.(#/LF) 55 135

Wt. on Panel(#/LF) 100 100 Reduction(%) 40 40 40 40 40 40 40 40 RM(#') -245.985 -42317.6 0 0 0 0 0 0

-28797.1 Resultant(#') 8719.198 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Uplift @ Panel 3790.956 -1175.39 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Simpson' hdu5 w/ n/a

Restraint 4x post

Edge(#)

Job : Petrie Residence Architect: Leif Anderson Job #: T20B3 Feb-20 Date:

<u>Seismic Loading Only</u> Garage

• •	Main Roof D	iaphragm						
Direction: Front - Rea	ar							
Vseismic @ Level=		3092						
Vseismic total=		4606						
Vseismic with redunda		4004						
Total Load to be resolv		4604						
Grid	1	2						
Span(FT.)	24.5							
Wind load(#/LF)	400.0044	400 0044	400 0044	100 0011	400.0044	100 00 11	400.0044	100 00 11
Seismic load(#/LF)	126.2041	126.2041	126.2041	126.2041	126.2041	126.2041	126.2041	126.2041
Load#1(LB)	756	756						
Load#2(LB)	, 55	, 55						
Load#3(LB)								
P(wind+L1,L2,L3)=	756	756	0	0	0	0	0	0
P(seismic+L1,L2,L3)=	2302	2302	0	0	0	0	0	0
Wall Length(FT.)	12.71	20						
Unit Shear(#/LF)	181.1172	115.1	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Wall Type	P1-6"	P1-6"						
p								
Area Ab(sq.ft.)	500	500						
shear ratio r=	0.39322	0.249891	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Redundancy factor	-0.274622	-1.57926	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
0 (" L ((FT)	0.00							
Section Length(FT)	6.33	20						
Panel Height(FT)	9	9						
(M)from upper level	-8660	-11992	#DI) ((0)	#DD //OI	#DD #01	"D" "O	"D" "O'	"D" "O"
OTM(#')	1658.249	8726	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Panel Length(LF)	6.33	20						
Panel Wt.(#/LF)	135	135						
Wt. on Panel(#/LF)	100	100						
Reduction(%)	40	40	40	40	40	40	40	40
RM(#')	-2824.857	-28200	0	0	0	0	0	0
T CIVI(#F)	-2024.007	-20200	· ·	· ·	J	J	· ·	· ·
Resultant(#')	-1166.609	-19474	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Uplift @ Panel	-184.2984	-973.7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Edge(#)	· · · · · · · · · ·			.				
· 3 - (··)								
Simpson'	n/a	n/a						
Restraint								

Wind Load Design Data

Design Based on IBC 2015 ASCE 7-10 SEAW Rapid Solutions Methodology (RSM-03)

Basic Wind Speed

 $\overline{V_{3.5}} = 110 \text{ mph}$ $V_{fm} = 85 \text{ mph}$

Exposure

(

Roof Pitch

4:12

Mean Roof Height

21 feet

Least Horizontal Dimension

21 feet

Low Rise Building Criteria (h = 21')

- 1) $h \le 60$ feet
- 2) h ≤least horizontal dimension

Topographic Factors (Figure 3-3A, SEAW RSM)

 $\mathbf{K}_1 = \mathbf{0}$

 $K_2 = 0$

 $K_3 = 0$

$$K_t = (1 + (K_1 * K_2 * K_3))^2$$

 $K_t = 1$

Importance Factor

 $\overline{I_w} = 1$

Building Envelope

Enclosed

Design Wind Pressures

$$P_{rsm} = q_s * K_{zt} * C_{rsm} * (I_w)$$

$$q_s = 20.7 \#/sq ft$$

(Figure 3-1 SEAW RSM)

$$K_{zt} = 1.67$$

(Wind Load Factors)

 $I_w = 1$

Crsm Factors See Below

Ballooning Case (Figure 3-5 EB, SEAW RSM)

Roof

Windward Roof = -.08(Up)

Windward Roof (O.H.) = -.8+-.58 = -1.38 (Up)

Leeward Roof = -.6(Up)

Walls

 $\overline{\text{Windward Wall}} = .42(\text{Inward})$

Leeward Wall = -.5(Outward)

Deflating Case (Figure 3-5 ED, SEAW RSM)

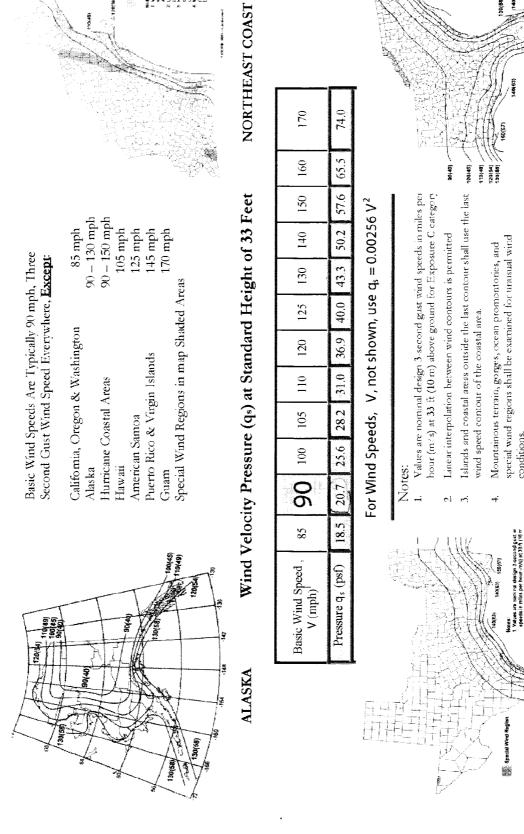
Roof

Windward Roof = .48(Up)

Windward Roof (O.H.) = .48+..58 = -1.06(Up)

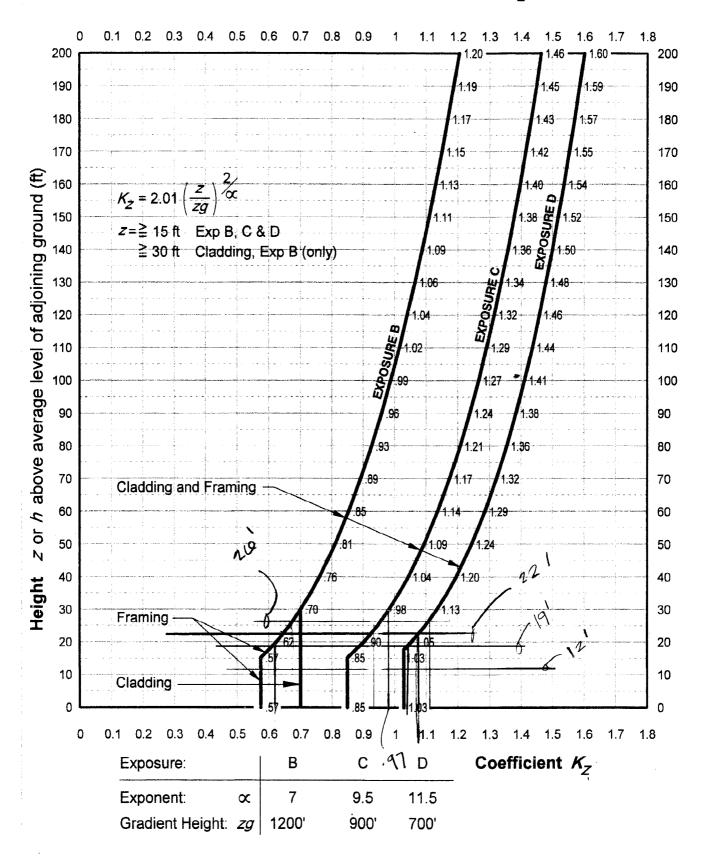
Leeward Roof = -.3(Up)

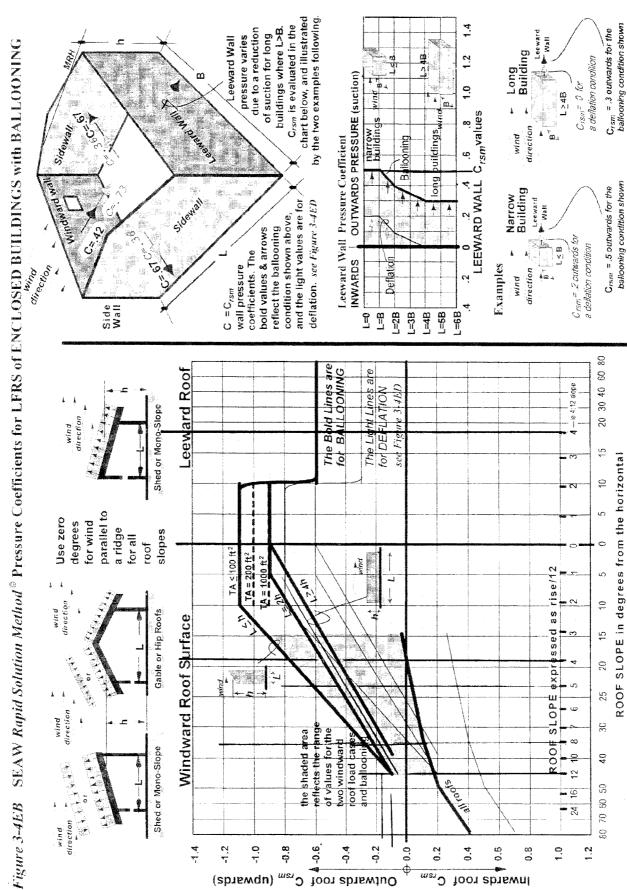
Walls


Windward Wall = .73(Inward)

Leeward Wall) = -.14(Outward)

SOUTHEAST COAST


Figure 3-1 Basic Wind Speeds, q,


(These notes and excerpts of maps are reprinted with permission by the International Code Council. See IBC Figure 1609 for larger scale maps)

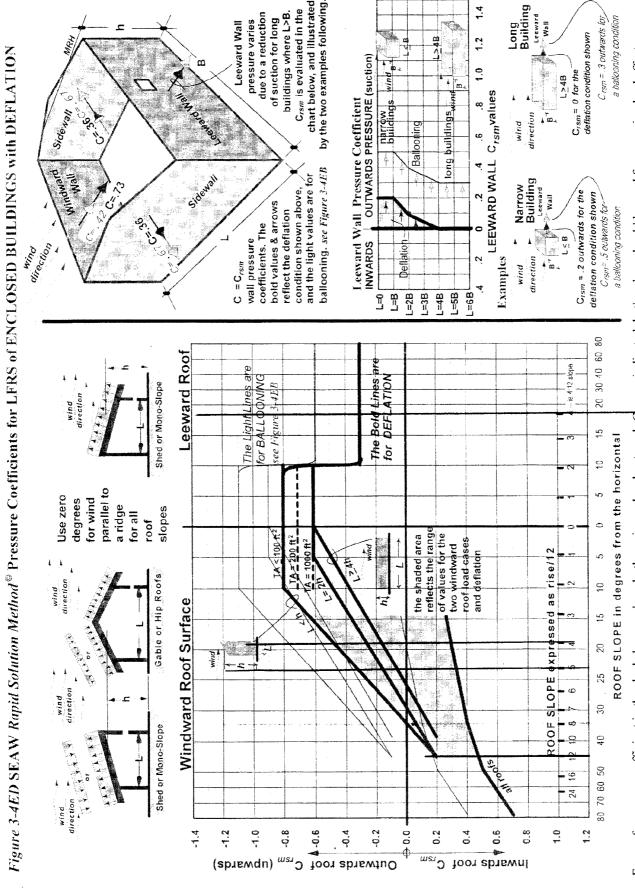
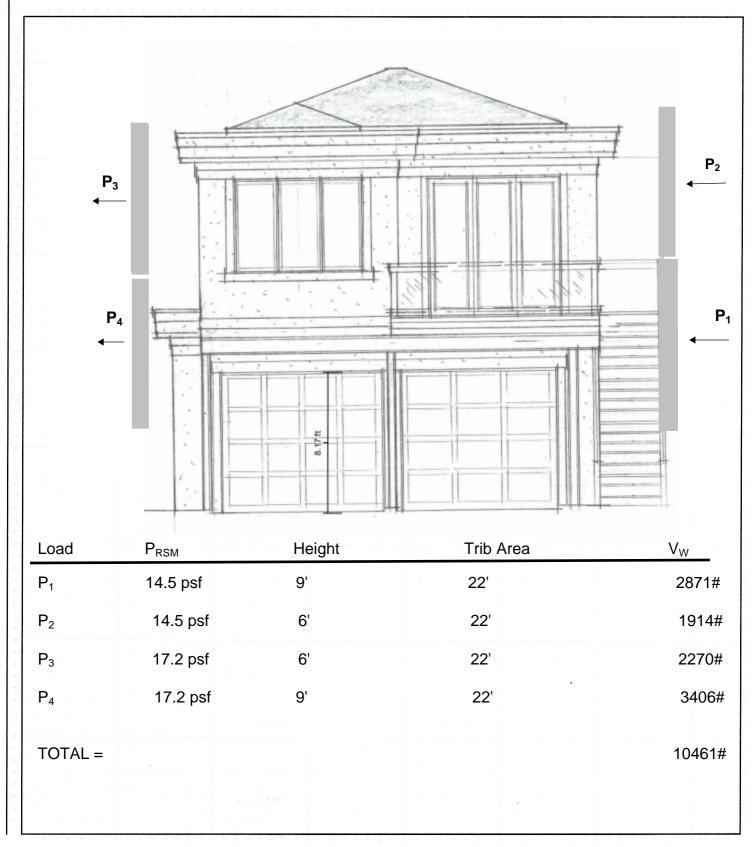

GULF COAST

Figure 3-2 Velocity Exposure Coefficient K_z

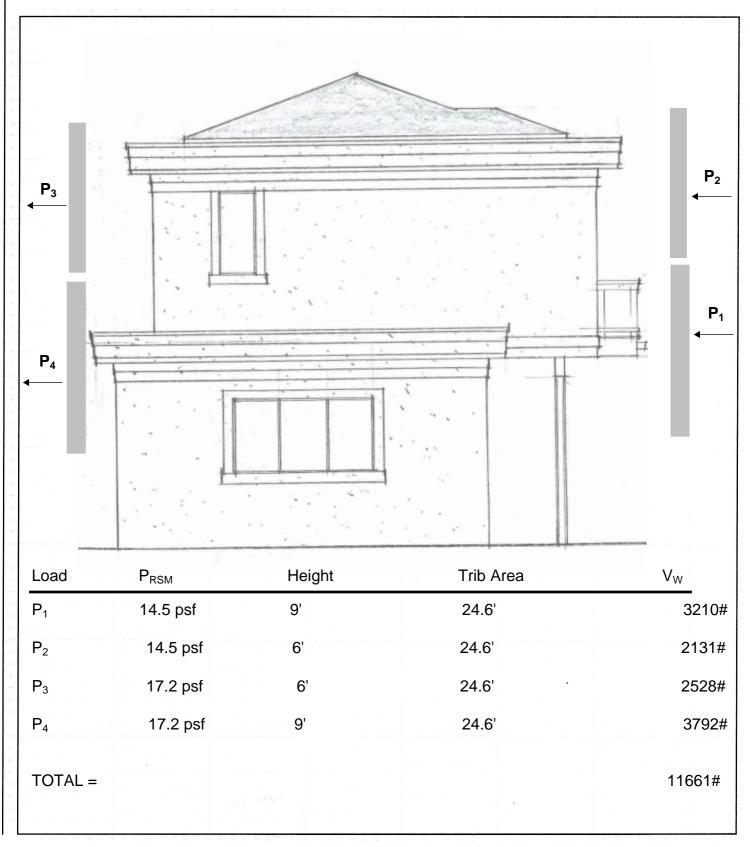
For roof pressure coefficient in the shaded area, where both are inward and outward, Crsm are indicated, both values should be used for assessing load effects

For roof pressure coefficient in the shaded area, where both are inward and outward, C'ron are indicated, both values should be used for assessing load effects


Factored Wind Pressures Prsm =

			\sim
$\mathbf{R} \sim \mathbf{I}$	IOON	ına	(,,000
Dai	IUUIII	II IU	Case

Ballooming Gae	h	$q_{\rm s}$	K_{zt}	C _{rs}	_{sm} I _w	K_{t}	$\underline{P_{rsm}}$
Windward Wall =	0'-10'		20.7	1.67	0.42	1	1 14.51898
Leeward Wall	0'-10'		20.7	1.67	-0.5	1	1 -17.2845
Side Wall			20.7	1.67	0.67	1	1 23.16123
Windward Roof			20.7	1.67	-0.67	1	1 -23.1612
Windward Roof Over	hang		20.7	1.67	-1.3	1	1 -44.9397
Leeward Roof			20.7	1.67	-1.1	1	1 -38.0259
Deflating Case							
Windward Wall =	0'-10'		20.7	1.67	0.73	1	1 25.23537
Leeward Wall	0'-10'		20.7	1.67	-0.2	1	1 -6.9138
Side Wall			20.7	1.67	-0.36	1	1 -12.4448
Windward Roof			20.7	1.67	-0.28	1	1 -9.67932
Windward Roof Over	hang		20.7	1.67	-0.86	1	1 -29.7293
Leeward Roof			20.7	1.67	-0.8	1	1 -27.6552


STEPHEN TAPP
ARCHITECT/P.E.
2330 East Madison Street
SEATTLE, WA 98112
(206) 320-0534

JOB	
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	

STEPHEN TAPP
ARCHITECT/P.E.
2330 East Madison Street
SEATTLE, WA 98112
(206) 320-0534

JOB	
SHEET NO	OF
CALCULATED BY	DATE
CHECKED BY	DATE

Job : Petrie Residence
Architect: Leif Anderson
Job #: T20B3
Date: Feb-20

Wind Loading Only
Garage

Level: Upper Roof Diaphragm
Direction: Side - Side
Vseismic @ Level=
Vseismic total=
Vseismic with redundancy=
Total Load to be resolved (#)=

Grid

A200

Grid C A- 2
Span(FT.) 24
Wind load(#/LF) 175 175
Seismic load(#/LF) 0 0

Load#1(LB) Load#2(LB) Load#3(LB)

P(wind+L1,L2,L3)=2100 2100 0 0 0 0 0 0 0 0 P(seismic+L1,L2,L3)= 0 0 0 0 0 0 Wall Length(FT.) 8.16 20 Unit Shear(#/LF) 257.3529 105 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! P1-6" Wall Type P1-6"

0

0

0

0

0

0

Area Ab(sq.ft.) shear ratio r= #DIV/0! Redundancy factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Section Length(FT) 2.11 10 Panel Height(FT) 6.7 9 (M)from upper level 0 0 9450 OTM(#') 3638.199 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Panel Length(LF) 2.11 10 122 135 Panel Wt.(#/LF) Wt. on Panel(#/LF) 100 100 Reduction(%) 40 40 40 40 40 40 40 40 -296.5099 RM(#') -7050 0 0 0 0 0 0 Resultant(#') 3341.689 2400 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Uplift @ Panel 240 1583.739 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Edge(#) Simpson' cmstc16 n/a

strap

Restraint

Job : Petrie Residence Architect: Leif Anderson Job #: T20B3 Date: Feb-20

Wind Loading Only
Garage

Level: Upper Fl'r/ Direction: Side - Side Vseismic @ Level= Vseismic total= Vseismic with redunda Total Load to be resole	ancy=	Diaphragm						
Grid	日奉	8 A	1					
Span(FT.)	20							
Wind load(#/LF)	300		300					
Seismic load(#/LF)	0	0	0	0	0	0	0	0
Load#1(LB) Load#2(LB) Load#3(LB)	2100	2100						
P(wind+L1,L2,L3)=	5100	5100	0	0	0	0	0	0
P(seismic+L1,L2,L3)=	2100	2100	0	0	0	0	0	0
, , ,								
Wall Length(FT.)	5.23	24.5						
Unit Shear(#/LF)	975.1434	208.1633	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Wall Type	P2-3"	P1-6"						
Area Ab(sq.ft.)				<u> </u>				
shear ratio r=	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Redundancy factor	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Section Length(FT)	2.3	24.5						
Panel Height(FT)	5	9						
(M)from upper level	12920	4800						
OTM(#')	24134.15	50700	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Panel Length(LF)	2.3	24.5						
Panel Wt.(#/LF)	55	135						
Wt. on Panel(#/LF)	150	100						
Reduction(%)	40	40	40	40	40	40	40	40
RM(#')	-325.335	-42317.6	0	0	0	0	0	0
Resultant(#')	23808.81	8382.375	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Uplift @ Panel	10351.66	342.1378	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Edge(#)								
Simpson'	hdu14 w/	hdu5 w/						
Restraint		dbl studs						
	F							

Job : Petrie Residence
Architect: Leif Anderson
Job #: T20B3
Date: Feb-20

Wind Loading Only
Garage

Upper Roof Diaphragm Level: Direction: Front - Rear Vseismic @ Level= Vseismic total= Vseismic with redundancy= Total Load to be resolved (#)= 4485 1.2 Grid Span(FT.) 23 Wind load(#/LF) 195 195 0 0 0 0 Seismic load(#/LF) 0 0 0 0 Load#1(LB) Load#2(LB) Load#3(LB) P(wind+L1,L2,L3)=2242.5 2242.5 0 0 0 0 0 0 0 0 P(seismic+L1,L2,L3)= 0 0 0 0 0 0 Wall Length(FT.) 18.5 16.33 Unit Shear(#/LF) #DIV/0! #DIV/0! #DIV/0! #DIV/0! 121.2162 137.3239 #DIV/0! #DIV/0! P1-6" P1-6" Wall Type Area Ab(sq.ft.) #DIV/0! #DIV/0! shear ratio r= #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Redundancy factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Section Length(FT) 18.5 16.33 Panel Height(FT) 9 9 (M)from upper level 0 0 20182.5 OTM(#') 20182.5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Panel Length(LF) 18.5 16.33 Panel Wt.(#/LF) 135 135 Wt. on Panel(#/LF) 100 100 Reduction(%) 40 40 40 40 40 40 40 40 RM(#') -24128.63 -18800.2 0 0 0 0 0 -3946.125 1382.343 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Resultant(#') Uplift @ Panel -213.3041 84.65049 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Edge(#) Simpson' n/a n/a Restraint

Petrie Residence Job: Architect: Leif Anderson Job #: T20B3 Date: Feb-20

Wind Loading Only Garage

Direction: Front - Re Vseismic @ Level= Vseismic total= Vseismic with redund Total Load to be reso Grid Span(FT.) Wind load(#/LF)	ancy= ved (#)= 1 24.5 286	11785 2 286	0	0		0	0	0
Seismic load(#/LF) Load#1(LB) Load#2(LB) Load#3(LB)	2389	2389	U	0	0	U	0	0
P(wind+L1,L2,L3)= P(seismic+L1,L2,L3)=	5892.5 = 2389	5892.5 2389	0	0	0	0 0	0	0
Wall Length(FT.) Unit Shear(#/LF) Wall Type	12.71 463.6113 P1-3"	20 294.625 P1-4"	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Area Ab(sq.ft.) shear ratio r= Redundancy factor	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
Section Length(FT) Panel Height(FT) (M)from upper level OTM(#')	6.33 9 -1314 25097.94	20 9 2800 55832.5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Panel Length(LF) Panel Wt.(#/LF) Wt. on Panel(#/LF) Reduction(%) RM(#')	6.33 135 100 40 -2824.857	20 135 100 40 -28200	40 0	4 0 0	40 0	4 0 0	4 0 0	40 0
Resultant(#') Uplift @ Panel Edge(#)	22273.08 3518.654	27632.5 1381.625	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
Simpson' Restraint		hdu5 w/ dbl studs				· · · · · · · · · · · · · · · · · · ·		