

MiTek USA, Inc. MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661 Telephone 916-755-3571

Re: 20-127801T LONDON DESIGN BUILD

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by BMC West-Everett, WA.

Pages or sheets covered by this seal: R64820163 thru R64820175

My license renewal date for the state of Washington is May 25, 2021.

December 21,2020

Dyer, Cecil

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	A1	California Girder	1	1	Job Reference (optional)	R64820163

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:47 ID:j4WB117IEgevR1RvEceSqTy71yp-Mock Me

Page: 1

Scale = 1:36.5

Plate Offsets (X, Y): [3:0-3-12,0-1-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		тс	0.75	Vert(LL)	-0.26	7-8	>656	240	MT20	185/148
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.42	7-8	>408	180		
TCDL		7.0	Rep Stress Incr	NO		WB	0.04	Horz(CT)	0.09	5	n/a	n/a		
BCLL		0.0*	Code	IRC201	5/TPI2014	Matrix-S								
BCDL		10.0											Weight: 58 lb	FT = 20%
LUMBER				3)	Unbalanced	snow loads have	been cor	sidered for t	his					
TOP CHORD	2x4 DF 180	0F 1.6E (or 2x4 DF No.1&Btr		design.									
	Except 3-	4:2x6 DF	SS	4)	This truss ha	is been designed	for greate	er of min root	f live					
BOT CHORD	2x4 DF 180	0F 1.6E (or 2x4 DF No.1&Btr		load of 20.0	psf or 2.00 times	flat roof lo	oad of 25.0 p	sf on					
WEBS	2x4 HF No.	.2			overhangs n	on-concurrent wit	th other liv	/e loads.						
BRACING				5)	Provide adeo	quate drainage to	prevent v	water pondin	g.					
TOP CHORD	Structural v	vood shea	athing directly applie	ed or 6)	This truss ha	is been designed	for a 10.0) psf bottom						
	2-4-15 oc p	ourlins, ex	cept		chord live loa	ad nonconcurrent	with any	other live loa	ads.					
	2-0-0 oc pu	urlins (3-4	-11 max.): 3-4.	7)	* This truss h	has been designe	d for a liv	e load of 20.	0psf					
BOT CHORD	Rigid ceilin	g directly	applied or 10-0-0 oc	;	on the bottor	n chord in all area	as where	a rectangle						
	bracing.				3-06-00 tall t	by 1-00-00 wide w		veen the bott	om					
REACTIONS	(size) 2	2=0-5-8, 5	5=0-5-8	0)	Graphical pu	ry other members	n door na	t donict the	cizo					
	Max Horiz 2	2=-16 (LC	54)	0)	or the orient	ation of the nurlin	along the	top and/or	5120					
	Max Grav 2	2=1615 (L	.C 34), 5=1615 (LC 3	34)	bottom chore		along the	top anu/or						
FORCES	(lb) - Maxin	num Com	pression/Maximum	9)	Hanger(s) or	other connection	device(s) shall be						
	Tension			0,	provided suff	ficient to support	concentra	ated load(s) 2	224					
TOP CHORD	1-9=0/14, 2	2-9=0/53,	2-10=-4802/0,		lb down and	36 lb up at 7-4-8	on top cl	hord, and 87	lb					
	10-11=-477	78/0, 11-1	2=-4742/0,		down at 7-4	-8 on bottom choi	rd. The d	esign/selecti	on of					
	3-12=-4727	7/0, 3-13=	-4623/0, 13-14=-462	23/0,	such connec	tion device(s) is t	he respor	nsibility of oth	ners.					
	14-15=-462	23/0, 4-15	=-4623/0, 4-16=-474	48/0,										
	16-1/=-4/6	53/0, 17-1	8=-4799/0,	1() In the LOAD	CASE(S) section	n, loads ap	oplied to the	face					
	5-18=-4823	3/0, 5-19=	0/53, 6-19=0/14		of the truss a	are noted as front	(F) or ba	ck (B).						
BOT CHORD	2-8=0/4613	3, 8-20=0/	4603, 7-20=0/4603,	L	DAD CASE(S)	Standard							IL	DV
	5-7=0/4634	+ 07 440	404 47 0/000	1)	Dead + Sno	ow (balanced): Lu	Imber Inc	rease=1.15,	Plate				CECIE	TER
VVEBS	3-8=0/220,	3-7=-140	/181, 4-7=0/223		Increase=1	.15							DE WA	SHO
NOTES					Uniform Loa	ads (lb/ft)						-	B	
1) Wind: ASC	CE 7-10; Vult	=110mph	(3-second gust)		Vert: 1-3	=-64, 3-4=-64, 4-6	6=-64, 2-	5=-20						6
Vasd=8/m	nph; ICDL=4	.2pst; BCI	DL=6.0pst; h=25tt; C	Cat.	Concentrate	ed Loads (lb)							442	
II; EXP B; I		VFRS (en			Vert: 13=	-592, 14=-189, 1	5=-592, 2	20=-43 (F)						
Exterior (2	(2) - 2 - 0 - 0 + 0 - 12	2 7 Interi	OF (1) 1-0-0 10 5-8-8,	,										
	tilever left and	d right ovr	101 (1) 13-3-7 10 10-8	9-0 oft										
and right c		for momb	ere and forces &	en									P 803/1	82 0 2
MWFRS fr	or reactions s	hown. Lu	mber DOI =1.33 plat	te									A GIST	ERL
arip DOL=	:1.33												SIGNIA	TENU
2) TCLL: AS(CE 7-10: Pf=2	25.0 psf (f	ilat roof snow):										-ONP	LL L
Category I	II: Exp B: Par	tially Exp.	: Ct=1.10											

Category II; Exp B; Partially Exp.; Ct=1.10

M MiTek MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

December 21,2020

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	A2	California Girder	1	1	Job Reference (ontional)	R64820164

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:49 ID:C4fryplw_eBXg1QvHXZexRy71y?-Mock Me

Page: 1

Scale = 1:36.5

Plate Offsets (X, Y): [2:0-5-4,0-1-0], [4:0-5-0,0-2-6], [7:0-5-4,0-1-0]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													-
Loading TCLL (Roof Snow = TCDL BCLL	25.0)	(psf) 25.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	5/TPI2014	CSI TC BC WB Matrix-S	0.69 0.60 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.31 0.04	(loc) 10-11 10-11 7	l/defl >923 >558 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 185/148
BCDL		10.0	Code	11(0201)	5/1712014	Wath - 5							Weight: 69 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 HF No 2x6 DF SS 2x4 HF No Structural 2-6-9 oc p 2-0-0 oc p	0.2 *Excep 0.2 wood shea urlins, exc urlins, (2-1	t* 4-5:2x6 HF No.2 athing directly applie ept 0-6 max.): 4-5.	1) ed or	Wind: ASCE Vasd=87mpł II; Exp B; En Exterior (2) - Exterior (2) 5 zone; cantile and right exp MWFRS for I	7-10; Vult=110m; n; TCDL=4.2psf; E closed; MWFRS (2-0-0 to 1-0-0, Int i-8-8 to 13-3-7, Int ver left and right e posed;C-C for mer reactions shown;	ph (3-sed BCDL=6. envelope erior (1) terior (1) exposed mbers ar Lumber	cond gust) Dpsf; h=25ft; and C-C 1-0-0 to 5-8-8 13-3-7 to 16- ; end vertical d forces & DOL=1.33 pla	Cat. 3, -9-0 left ate	LOAD (1) De In Ur Co	CASE(S) ead + Sn crease=' hiform Lo Vert: 1-4 oncentra Vert: 9= 18=-270) Star low (ba 1.15 bads (II 4=-64, ted Los -43 (B)), 22=-:	ndard alanced): Lumber b/ft) 4-5=-64, 5-8=-64 ads (lb)), 12=-43 (B), 16: 227 (B), 23=-43 (- Increase=1.15, Plate 4, 2-7=-20 =-270, 17=-189, B), 24=-43 (B),
BOT CHORD	Rigid ceilir bracing.	ng directly	applied or 10-0-0 or	2)	grip DOL=1.3 TCLL: ASCE	33 7-10; Pf=25.0 ps	f (flat roo	f snow);			25=-43	(B), 26	=-227 (B)	
REACTIONS	(size) Max Horiz Max Grav	2=0-5-8, 7 2=-17 (LC 2=1607 (L	7=0-5-8 ⊱54) .C 34), 7=1607 (LC 5	3) 34) (1)	Category II; I Unbalanced design.	Exp B; Partially Ex snow loads have	kp.; Ct=1 been coi	.10 Isidered for the second	his					
FORCES	(lb) - Maxii Tension	mum Com	pression/Maximum	, 4)	load of 20.0	osf or 2.00 times f	lat roof l	ad of 25.0 p	sf on					
TOP CHORD	1-13=0/16 14-15=-39 4-16=-413 17-18=-41 6-19=-392 7-21=0/62	, 2-13=0/6 47/0, 3-15 9/0, 16-17 39/0, 5-18 9/0, 19-20 , 8-21=0/1	2, 2-14=-3972/0, =-3924/0, 3-4=-4260 =-4139/0, =-4139/0, 5-6=-4213 =-3952/0, 7-20=-39 6	5) 6/0, 6) 3/0, 7) 77/0,	Provide adec This truss ha chord live loa * This truss h on the bottor	quate drainage to s been designed ad nonconcurrent has been designed n chord in all area	for a 10. with any d for a liv s where	ve roads. water ponding 0 psf bottom other live loa e load of 20.0 a rectangle	g. Ids. Opsf					
BOT CHORD	2-22=0/38 11-23=0/4 10-25=0/4 7-26=0/38	, 0 21–0/1 07, 12-22= 190, 23-24 190, 9-10= 12	=0/3807, 11-12=0/38 4=0/4190, 24-25=0/4 =0/3812, 9-26=0/381	307, 4190, 8) 12,	3-06-00 tall to chord and ar Graphical pu or the orienta	by 1-00-00 wide w by other members rlin representation ation of the purlin a	n does no along the	ot depict the s top and/or	om size				CECIL	DYER
WEBS	4-11=0/33 3-11=-126 3-12=-113	2, 4-10=-1 /529, 6-10 /132	57/55, 5-10=0/323, =-124/468, 6-9=-77/	9) /152,	Hanger(s) or provided suff	other connection icient to support of 57 Ib up at 6-7-5	device(s) shall be ated load(s) 3	320			7	E OF WA	SHI CTO
NOTES				10	Ib up at 7-4- on top chord 6-1-4, 87 lb co and 87 lb do design/selec responsibility) In the LOAD of the truss a	s, and 320 lb down , and 87 lb down at down at 7-4-8, an wn at 10-7-12 on tion of such conner of others. CASE(S) section. ire noted as front	n and 57 at 4-1-4, d 87 lb c bottom de ction de , loads a (F) or ba	' Ib up at 8-1 87 Ib down a own at 8-7-1 chord. The vice(s) is the oplied to the t ck (B).	-11 at 2, face				PROFIESSIONA	82 EBED 160 LENGING

of the truss are noted as front (F) or back (B).

December 21,2020

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	B1	Monopitch Girder	2	1	Job Reference (optional)	R64820165

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:49 ID:m6MAu04EIrJUcby28NBzFky725v-Mock Me

Page: 1

Scale = 1:27.2

Plate Offsets (X, Y): [4:0-3-8,0-2-0]

												-		
Loading TCLL (Roof Snow = : TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.76 0.32 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.07 -0.01	(loc) 7-10 7-10 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 DF 1800F 1.6E 2x4 HF No.2 2x4 HF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-7-6, Max Horiz 2=43 (LC Max Uplift 2=-45 (LC Max Grav 2=609 (L (lb) - Maximum Cor	or 2x4 DF No.1&Btr eathing directly applie ccept end verticals. y applied or 10-0-0 or 4=0-2-2 ; 40) C 10) C 21), 4=683 (LC 21 poression/Maximum	4) 5) ed or 6) c 7) 8))	This truss ha load of 20.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 2. Beveled plat	is been designed f psf or 2.00 times fl on-concurrent with is been designed ad nonconcurrent has been designed in chord in all area by 1-00-00 wide with y other members. hanical connection e at joint(s) 4. hanical connection e capable of withst	ior great lat roof lo other lin or a 10.0 with any thor a lin s where ill fit betw h (by oth anding 4 to provi	er of min roof pad of 25.0 p: /e loads.) psf bottom other live load e load of 20.0 a rectangle /een the botto ers) of truss t 5 lb uplift at j	live lisf on ds. Dpsf om o o o o n t		Vert: 11 16=-16	=45 (F (F=-8,	=23, B=23), 14= B=-8), 17=-71 (F	·183 (F=-92, B=-92), =-36, B=-36)	
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=87m II; Exp B; E Corner (3) zone; cant and right e MWFRS fc grip DOL= 2) TCLL: ASC Category I 3) Unbalance design.	Tension 1-2=0/56, 2-11=-10 3-12=-1040/0, 3-13 4-14=-1000/0, 4-5= 2-15=-414/1024, 7- 7-16=-19/95, 16-17 3-7=-305/85, 4-7=0 CE 7-10; Vult=110mpl ph; TCDL=4.2psf; BC Enclosed; MWFRS (e -2-9-15 to 1-6-1, Exte ilever left and right ex- exposed; C-C for mem or reactions shown; Lu 1.33 CE 7-10; Pf=25.0 psf I; Exp B; Partially Exp ed snow loads have b	51/445, 11-12=-1044 =-1068/0, 13-14=-10 -18/0, 4-6=0/197 15=-14/1024, =-19/95, 6-17=-19/95 /1018 n (3-second gust) CDL=6.0psf; h=25ft; (nvelope) and C-C erior (2) 1-6-1 to 9-11 posed ; end vertical bers and forces & umber DOL=1.33 pla (flat roof snow); .; Ct=1.10 een considered for th	/0, 10) 40/0, 11) 5 Cat. -12 left te 12) te 12) te 12) 1)	surface with) Gap between diagonal or V) Hanger(s) or provided suf down and 11 at 2-9-8, 49 and 18 lb up 8-5-6, and 1- chord, and 2 down at 5-7 8-5-6, and 7 design/selec responsibility) In the LOAD of the truss a DAD CASE(S) Dead + Smi Increase=1 Uniform Lo Vert: 1-4	truss chord at join in inside of top cho rertical web shall n other connection ficient to support c 2 lb up at 2-9-8, 6 lb down and 18 lb at 5-7-7, and 141 41 lb down at 2-9-8, -7, 19 lb down at 3-5-6 tion of such conner of others. CASE(S) section, are noted as front (Standard bw (balanced): Lur 15 ads (lb/ft) =-64, 4-5=-64, 6-8	t(s) 4. rd bearir tot excee device(s oncentre 2 lb dow up at 5 lb dowr lb up at 2 2 lb dow 5-7-7, ar on bott fection de loads a (F) or ba	ig and first d 0.500in.) shall be tited load(s) 6 vn and 112 lb -7-7, 49 lb do a and 27 lb ug 8-5-6 on top vn at 2-9-8, ' d 71 lb dowr om chord. Th vice(s) is the oplied to the f ck (B). rease=1.15, l	2 lb 9 up wn 9 lb 9 lb 1 at 1 ac Plate			and a second sec	THOPHESSIONA	DYER SHINC	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

UNAL

December 21,2020

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	B2	Monopitch Girder	2	1	Job Reference (optional)	R64820166

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:50 ID:79GmC_z06HW7tp14vC?5i7y724m-Mock Me

Page: 1

Scale = 1:30.8

Plate Offsets (X, Y): [3:Edge,0-1-7]

Loading TCLL (ps) 2.50 Spacing 2.50 2-0-0 Lumber DOL CSI 1.15 DEFL TC in (loc) Idel I (loc) PLATES MIZ0 GRIP MIZ0 Cool Snow 2.50.0 7.0 Rep Stress Incr NO NO WB 0.00 Vert(LL) 0.02 6-9 999 240 MIZ0 185/148 MEDL 0.0.0 Code IRC2015/TPI2014 WB 0.00 Horz(CT) 0.00 2 n/a n/a LUMBER TOP CHORD 2x4 DF 1000F 1.6E or 2x4 DF No.18Btr DTO CHORD This truss has been designed for a loc ps fo 2.00 los of 0.00 ps fo 2.00 los of 0.20 ps fo 3.00 noverhangs non-concurrent with other like loads. This truss has been designed for a loc ps fo bottom chord in all areas where a rectangle 3-6-6 or pulms, except end verticals. This truss has been designed for a loc ps fo bottom chord in all areas where a rectangle 3-0-60 or like load of 20.0ps fo 3-0-60 or like load in (0,0) or like load 3-0-60 or like load or like l																
LUMBER 4) Ins truss has been designed for greater of min root live load 02.0.0 psf or 2.00 times filtar tool load 02.0.0 psf on overhangs non-concurrent with other live loads. YEBS 2x4 JF No.2 BACLING BERACING 5: This truss has been designed for a live load of 2.0.0 psf on overhangs non-concurrent with other live loads. TOP CHORD Structural wood sheathing directly applied or 3-6-5 oc purifies, except end verticals. 6: This truss has been designed for a live load of 2.0.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. REACTIONS (size) 2-07-7.6, 3=-01-8, 4=-02-2 Max Horiz 7: Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3, 4. FORCES (lb) - Maximum Compression/Maximum Tension 6: Structural wood sheathing directly applied or 3-06-00 tall by 1-00-00 wide will fit bpitwas to bearing plate at joint(s) 3, 4. 9: Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 3, 4. FORCES (lb) - Maximum Compression/Maximum Tension 0: Gap between inside of to pchord bearing and first diagonal or vertical web shall not exceed 0.500in. NOTES 1) Wind: ASCE 7-10; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2ps; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2; 2-9-51 to -0-0, Interior (1) 0-0-0 to s-11-12 zone; cantilever left an dright exposed; end vertical left and right exposed; chord vertical left and right exposed; end vertical left and right exposed; end vertic	Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	;/TPI2014	CSI TC BC WB Matrix-MP	0.76 0.31 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.02 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 185/148 FT = 20%	
 surface with truss chord at joint(s) 3, 4. Surface with truss chord at joint(s) 3, 4. Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. TOP CHORD 1-2=0/56, 2-10=-207/451, 3-10=-47/29, 3-11=-54/11, 11-12=-22/7, 12-13=-22/7, 4-13=-18/53, 4-5=-12/0, 3-6=-62/44 BOT CHORD 2-14=-419/178, 6-14=-8/9 NOTES Wind: ASCE 7-10; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -2-9-15 to 0-0, 0, Interior (1) 0-0-0 to 9-11-12 zone; cantilever left and right exposed; c-C for members and forces & 10 Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. 11 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 43 lb down and 21 lb up at 5-8-2, and 141 lb down and 27 lb up at 8-6-1 on top chord, and 7 lb down at 2-9-8, and 7 lb down at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 DF 18 2x4 HF Nc 2x4 HF Nc Structural 3-6-5 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	800F 1.6E 5.2 wood she purlins, exi ng directly 2=0-7-6, 3 2=40 (LC 2=-69 (LC 4=-62 (LC 2=503 (LC	or 2x4 DF No.1&Btr athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-1-8, 4=0-2-2 10) : 39), 3=-66 (LC 20), : 10) : 20), 3=424 (LC 21)	4) 5) d or 6) 7) 8) , 9)	This truss ha load of 20.0 U overhangs nu This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate Provide mec bearing plate Sa, 69 lb uplift Beveled plate	is been designed f psf or 2.00 times fl on-concurrent with is been designed ad nonconcurrent vi has been designed in chord in all area: by 1-00-00 wide wi by 0-ther members. hanical connection at joint(s) 3, 4. hanical connectior capable of withsta at joint 2 and 62 l e or shim required	for great lat roof k o other lin for a 10.0 with any d for a liv s where ill fit betw h (by oth anding 6 b uplift a to provi	er of min roof pad of 25.0 p; ve loads.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t ers) of truss t 66 lb uplift at j t joint 4. de full bearing	live sf on ds. Dpsf om o oint g						
MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-10; Pf=25.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10 3) Unbalanced snow loads have been considered for this design. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-64, 3-5=-64, 6-7=-20 Concentrated Loads (lb) Vert: 10=45 (F=23, B=-23), 11=-2 (F), 13=-185 (F=-93, B=-92)	FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=87n II; Exp B; Exterior (2 zone; can and right of MWFRS f grip DOL= 2) TCLL: AS Category 3) Unbalance design.	(lb) - Maxi Tension 1-2=0/56, 3-11=-54/ 4-13=-18/ 2-14=-419 CE 7-10; Vul nph; TCDL== Enclosed; M 2) -2-9-15 to tilever left ar exposed;C-C or reactions =1.33 CE 7-10; Pf= II; Exp B; Pa ed snow load	2-10=-207 11, 11-12= 53, 4-5=-1: //178, 6-14 it=110mph 4.2psf; BC WFRS (er 0-0-0, Inte dod right ex; c for memb shown; Lu =25.0 psf (i ritially Exp ds have be	 /451, 3-10=-47/29, /251, 3-10=-47/29, -22/7, 12-13=-22/7, 2/0, 3-6=-62/44 :=-8/9 (3-second gust) DL=6.0psf; h=25ft; C (velope) and C-C rior (1) 0-0-0 to 9-11- vosed; end vertical later and forces & mber DOL=1.33 plat flat roof snow); ; Ct=1.10 ven considered for this 	10) 11) at. -12 eft 12) e LC 1)	surface with Gap between Hanger(s) or provided suff down and 11 at 2-9-8, 49 and 21 lb up 8-5-6, and 14 chord, and 7 on bottom ch connection d In the LOAD of the truss a AD CASE(S) Dead + Snc Increase=1 Uniform Loc Vert: 1-3 Concentrate Vert: 10= (F=-93, E	truss chord at joinin in inside of top choi vertical web shall n other connection ficient to support c 2 lb up at 2-9-8, 4 lb down and 21 lb at 5-8-2, and 141 43 lb down and 27 lb down at 2-9-8, nord. The design/s levice(s) is the resp CASE(S) section, are noted as front (Standard ow (balanced): Lur .15 ads (lb/ft) =-64, 3-5=-64, 6-7 ed Loads (lb) -45 (F=23, B=23), 33-92)	t(s) 3, 4. rd bearin oot excect device(s oncentra 13 lb dow up at 5 lb dow lb dow lb up at and 7 lb selection ponsibili loads a ₁ (F) or ba mber Inc	ng and first ad 0.500in.) shall be ated load(s) 4 vn and 112 lb -7-7, 51 lb do and 27 lb up 8-6-1 on top o down at 2-9 of such ty of others. oplied to the f ck (B). rease=1.15, F	3 lb 9 up 9 at 			a second s	THORESSIONA	DYER SATORIA ERED LLENGING	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2A	Jack-Open	8	1	Job Reference (optional)	R64820167

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:50 ID:qXv1boEmi4LAz2P3S8bh0Jy72sm-Mock Me

Page: 1

3x4 =

1-10-15

Scale =	1:1	8.4
---------	-----	-----

Loading TCLL (Roof Snow = TCDL BCLL BCDL	: 25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.47 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORD 30T CHORD BRACING TOP CHORD 30T CHORD REACTIONS	2x4 HF Nc 2x4 HF Nc Structural 1-10-15 oc Rigid ceilir bracing. (size) Max Horiz	0.2 wood shea purlins. ng directly 2=0-5-8, 3 Mechanic 2=23 (LC	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 10)	6) d or 7) 8) ; LC	* This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 2 and 116 lb AAD CASE(S)	has been designed in chord in all area by 1-00-00 wide w by other members er(s) for truss to thanical connection e capable of withst uplift at joint 3. Standard	d for a liv is where ill fit betw russ coni n (by oth tanding 6	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 3 lb uplift at j	Opsf om to oint						
FORCES	Max Uplift Max Grav (lb) - Maxin	2=-63 (LC 2=393 (LC (LC 5) mum Com	: 10), 3=-116 (LC 20) C 20), 3=13 (LC 10), pression/Maximum) 4=37											
TOP CHORD	1-2=0/53,	2-5=-37/4,	, 5-6=-35/5, 3-6=-33/	7											
NOTES	2-4=0/0														
 Wind: AS Vasd=87r I; Exp B; Exterior (C zone; can and right MWFRS 1 grip DOL= 2) TCLL: AS Category Unbalanc design. 	CE 7-10; Vuli mph; TCDL=4 Enclosed; MM 2) -2-0-0 to 1. Villever left an exposed;C-C for reactions : =1.33 ;CE 7-10; Pf= ;CE 7-10; Pf= ;CE 7-10; Pf=	=110mph I.2psf; BC WFRS (en -0-0, Interi d right exp for memb shown; Lu -25.0 psf (f rtially Exp. Is have be	(3-second gust) DL=6.0psf; h=25ft; C velope) and C-C or (1) 1-0-0 to 1-10- ossed ; end vertical I bers and forces & mber DOL=1.33 plat flat roof snow); ; Ct=1.10 en considered for th	Cat. 13 eft is									CECIL CECIL	DYER	

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

December 21,2020

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2B	Jack-Open	4	1	Job Reference (optional)	R64820168

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:50 ID:AUiweVIvXczS3pH1FiBsjMy72sh-Mock Me

3-10-15

Page: 1

Scale = 1:19.4

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	(ps 25. 25.0) 7. 0. 10.	f) Spacing Plate Grip DO Lumber DOL 0 Rep Stress Ind 0* Code	2-0-0 L 1.15 1.15 cr YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.52 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 Structural wood 3-10-15 oc purlin Rigid ceiling dire bracing. (size) 2=0-5	sheathing directly a ns. ctly applied or 10-0- -8, 3= Mechanical, 4	6) oplied or 7) 8) -0 oc 4= L(* This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 3 and 55 lb u DAD CASE(S)	as been designed n chord in all areas y 1-00-00 wide wil y other members. er(s) for truss to tr nanical connection capable of withsta plift at joint 2. Standard	for a liv s where Il fit betw russ con a (by oth anding 5	e load of 20. a rectangle veen the bott nections. ers) of truss i3 lb uplift at	Opsf com to joint			•			
FORCES	Mech Max Horiz 2=33 Max Uplift 2=-55 Max Grav 2=394 (LC 5 (lb) - Maximum (anical (LC 10) (LC 10), 3=-53 (LC 4 (LC 20), 3=86 (LC) Compression/Maxim	20) 21), 4=72 um											
TOP CHORD	Tension 1-5=0/38, 2-5=0 3-7=-23/16 2-4=0/0	/53, 2-6=-44/3, 6-7=	-31/5,											
 Wind: ASC Vasd=87m II; Exp B; E Exterior (2) zone; canti and right e: MWFRS fo grip DOL=' TCLL: ASC Category II Unbalance design. This truss I load of 20.0 overhangs This truss I chord live I 	E 7-10; Vult=1100 ph; TCDL=4.2psf inclosed; MWFRS) -2-0-0 to 1-0-0, I lever left and righ xposed;C-C for m r reactions showr 1.33)E 7-10; Pf=25.0 p ; Exp B; Partially d snow loads hav has been designe 0 psf or 2.00 time: non-concurrent w has been designe oad nonconcurrer	mph (3-second gust) BCDL=6.0psf; h=2f (envelope) and C-C nterior (1) 1-0-0 to 3 t exposed ; end verti embers and forces & ; Lumber DOL=1.33 osf (flat roof snow); Exp.; Ct=1.10 e been considered find d for greater of min is flat roof load of 25. ith other live loads. d for a 10.0 psf bottot t with any other live	5ft; Cat. -10-3 ical left plate or this roof live 0 psf on bom loads.								A A A A A A A A A A A A A A A A A A A	CECIL I CECIL	DYER SHINCLOS BEED LENGTH	

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A REAL

December 21,2020

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2C	Jack-Open	4	1	Job Reference (optional)	R64820169

Run; 8,43 S Nov 30 2020 Print; 8,430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:50 ID:b3O3HXKoqXM1wG0cwqkZK?y72se-Mock Me

TCDL BCLL BCDL LUMBER

2-3-5

÷

				5-10-15								
Scale = 1:20.5												
₋oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL -	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.06	2-4	>999	240	MT20	185/148
Roof Snow = 25.0)		Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.13	2-4	>523	180		
CDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-P								
BCDL	10.0										Weight: 16 lb	FT = 20%

TOP CHORD	2x4 HF N	0.2
BOT CHORD	2x4 HF N	0.2
BRACING		
TOP CHORD	Structura	l wood sheathing directly applied or
	5-10-15 c	c purlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-5-8, 3= Mechanical, 4=
		Mechanical
	Max Horiz	2=42 (LC 10)
	Max Uplift	2=-47 (LC 10), 3=-31 (LC 14)
	Max Grav	2=422 (LC 21), 3=182 (LC 21),

4=112 (LC 5) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/53, 2-5=-57/4, 5-6=-34/6, 6-7=-31/8,

3-7=-29/36 BOT CHORD 2-4=0/0

NOTES

- Wind: ASCE 7-10; Vult=110mph (3-second gust) 1) Vasd=87mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -2-0-0 to 1-0-0, Interior (1) 1-0-0 to 5-10-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pf=25.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 7)

3x4 =

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 31 lb uplift at joint 3 and 47 lb uplift at joint 2.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2D	Jack-Open	2	1	Job Reference (optional)	R64820170

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:51 ID:x1BxKEOwe4_K11uZjNKk12y72sZ-Mock Me

0-3-14	

2-6-14

. . . .

4 3

Page: 1

6-7-8

12 3 Г

Scale = 1:22.8				
Loading	(psf)	Spacing	2-0-0	CSI
TCLL	25.0	Plate Grip DOL	1.15	TC

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	25.0	Plate Grip DOL	1.15		TC	0.72	Vert(LL)	-0.10	2-5	>731	240	MT20	185/148	
(Roof Snow =	25.0)	Lumber DOL	1.15		BC	0.45	Vert(CT)	-0.21	2-5	>366	180			
TCDL	7.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-P									
BCDL	10.0											Weight: 19 lb	FT = 20%	
LUMBER			6)	* This truss h	nas been designe	ed for a liv	e load of 20.0	0psf						
TOP CHORD	2x4 HF No.2			on the bottor	m chord in all are	as where	a rectangle							
BOT CHORD	2x4 HF No.2			3-06-00 tall t	oy 1-00-00 wide v	will fit betw	een the bott	om						
BRACING			7)	Chord and an	ny other members	S.	actions							
TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly applie	ed or 7) 8)	Provide mec	hanical connection	on (by oth	ers) of truss t	to						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	c 9)	Provide mec	hanical connection	on (by oth	ers) of truss t	to						
REACTIONS	(size) 2=0-5-8, 3 Max Horiz 2=48 (LC Max Uplift 2=-45 (LC Max Grav 2=453 (LC 5=127 (LC	3=0-1-8, 5= Mechan 10) 2 10), 3=-40 (LC 14) 2 21), 3=253 (LC 21 2 5)	iical 10 ^{),} L0	2 and 40 lb u 2 beveled plat surface with DAD CASE(S)	a capable of withs uplift at joint 3. e or shim require truss chord at joi Standard	ed to provie int(s) 3.	de full bearin	g						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-2=0/53, 2-6=-63/3, 3-4=-11/0	, 6-7=-36/9, 3-7=-34	/43,											
BOT CHORD	2-5=0/0													
NOTES														
 Wind: ASC Vasd=87n II; Exp B; I Exterior (2 zone; cant and right e MWFRS fr grip DOL= 	CE 7-10; Vult=110mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (err 2) -2-0-0 to 1-0-0, Interi tilever left and right exp exposed;C-C for memb or reactions shown; Lu -1.33	(3-second gust) DL=6.0psf; h=25ft; (ivelope) and C-C or (1) 1-0-0 to 7-1-0 posed ; end vertical pers and forces & mber DOL=1.33 pla	Cat.) left ate									CECIL OF WA	DYER	

TCLL: ASCE 7-10; Pf=25.0 psf (flat roof snow); 2) Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

FOR STIRE TESSIONAL ENGINE December 21,2020

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2E	Jack-Open	2	1	Job Reference (optional)	R64820171

2

5

1

BMC (Everett, WA), Everett, WA - 98201,

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:51 ID:qoRS9cRRilUIVfCKyDPgCuy72sV-Mock Me

4

12 3

7 6

2-7-0

Page: 1

3x4 =

-0-

~ 4.40.0

Scale = 1:18.8														
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(25.0) 1	psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-P	0.52 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 Structural woo 2-7-0 oc purlir Rigid ceiling of bracing. (size) 2=0	od shea ns. directly a 0-5-8, 3	athing directly applie applied or 10-0-0 oc = Mechanical, 4=	ed or 7 ad or 8 c L	 * This truss on the botto 3-06-00 tall chord and a ?) Refer to gird ?) Provide mee bearing plate 3 and 63 lb ?) COAD CASE(S) 	has been designe m chord in all area by 1-00-00 wide w ny other members ler(s) for truss to thanical connectio e capable of withs uplift at joint 2. Standard	d for a liv as where rill fit betv truss con n (by oth tanding 5	re load of 20.0 a rectangle veen the botto nections. ers) of truss t i3 lb uplift at j	Dpsf om o oint					
	Max Horiz 2=3 Max Uplift 2=- Max Grav 2=3 (LC	chanica 33 (LC ⁻ 63 (LC 381 (LC 5)	ai 10) 10), 3=-53 (LC 20) 20), 3=86 (LC 21),	4=46										
FORCES	(lb) - Maximur Tension	n Comp	pression/Maximum	_										
TOP CHORD	1-5=0/38, 2-5= 3-7=-23/16	=0/53, 2	2-6=-44/3, 6-7=-31/5	5,										
BOT CHORD	2-4=0/0													
NOTES			<i>(</i> a b c)											
 Wind: AS Vasd=87r II; Exp B; Exterior (2 zone; can and right MWFRS f grip DQL 	CE 7-10; Vult=11 mph; TCDL=4.2p Enclosed; MWFI 2) -2-0-0 to 1-0-0 tillever left and rig exposed;C-C for for reactions sho =1 33	osf; BCI RS (env), Interio ght exp membe wn; Lur	(3-second gust) DL=6.0psf; h=25ft; C velope) and C-C or (1) 1-0-0 to 3-10- osed ; end vertical ers and forces & mber DOL=1.33 pla	Cat. 3 left te								ý	CECIL S OF WA	DYER
 2) TCLL: AS Category 	CE 7-10; Pf=25. II: Exp B: Partial	0 psf (fl lv Exp.:	at roof snow); : Ct=1.10										L	
 Unbalanc design. 	ed snow loads h	ave bee	en considered for th	nis										
 4) This truss load of 20 overhang 	has been design 0.0 psf or 2.00 tin s non-concurrent	ned for nes flat t with of	greater of min roof roof load of 25.0 ps ther live loads.	live on								3	PROFIEGIST	82 EBED TRU
5) This truss chord live	has been designed how the second s	ned for rent wit	a 10.0 psf bottom h any other live load	ds.									C'SSIONA	LENGL

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

> V MiTek MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

December 21,2020

STONA-

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2F	Jack-Open	2	1	Job Reference (optional)	R64820172

β-3-14

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:51 ID:_yiaoPIEC2S5QhYvhGDAnXy727d-Mock Me

3x4 =

Scale = 1:19.7

2-3-5

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.57 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 HF No.2 2x4 HF No.2 Structural wood she 2-7-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or	6) ed or 7) 8) c	* This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3 and 67 lb u	has been designe n chord in all aree by 1-00-00 wide w by other members er(s) for truss to hanical connection o capable of withs plift at joint 2.	ed for a liv as where vill fit betw s. truss con truss con (by oth standing 3	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 11 b uplift at j	Opsf om to oint					
REACTIONS	(size) 2=0-5-8, 3 Mechanic Max Horiz 2=42 (LC Max Upliti 2=-67 (LC Max Grav 2=388 (LC 4=46 (LC	B= Mechanical, 4= al 10) 5 10), 3=-31 (LC 14) 5 21), 3=182 (LC 21 5)	LO),	AD CASE(S)	Standard								
FORCES	(lb) - Maximum Com Tension 1-2=0/53, 2-5=-57/4	pression/Maximum , 5-6=-34/6, 6-7=-32	/8,										
BOT CHORD NOTES 1) Wind: ASI Vasd=87r II; Exp B; Exterior (2 zone; can and right (MWFRS f grip DOL= 2) TCLL: AS Category 3) Unbalance	2-4=0/0 CE 7-10; Vult=110mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er 2) -2-0-0 to 1-0-0, Interi tillever left and right exp exposed;C-C for memb for reactions shown; Lu =1.33 CE 7-10; Pf=25.0 psf ((II; Exp B; Partially Exp. ed snow loads have be	(3-second gust) DL=6.0psf; h=25ft; (ivelope) and C-C ior (1) 1-0-0 to 5-10- oosed; end vertical bers and forces & mber DOL=1.33 pla flat roof snow); .; Ct=1.10 ben considered for th	Cat. 3 left tte								, etc.	CECIL State OF WA	DYER SHINGING

- design. This truss has been designed for greater of min roof live 4)
- load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ROMESSIONAL ENGLY J'STONAL ENGIN December 21,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2H	Jack-Open	2	1	Job Reference (optional)	R64820173

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:51 ID:ihuebGUVqo8RE3iemapUmPy726g-Mock Me

Page: 1

1-3-11

1-9-7 0-3-14

Scale = 1:20.8

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.52 0.45 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.00	(loc) 2-4 2-4 3	l/defl >731 >366 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 HF No.2 2x4 HF No.2 Structural wood shr 6-0-0 oc purlins. Rigid ceiling directh bracing. (size) 2=0-5-8, Mechani Max Horiz 2=33 (LC Max Uplift 2=-38 (L Max Grav 2=420 (L 4=127 (L	eathing directly appli y applied or 10-0-0 o 3= Mechanical, 4= cal 2 10) C 10), 3=-52 (LC 20) C 20), 3=88 (LC 21), C 5)	6) ed or 7) 8) c LO	* This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 3 and 38 lb u AD CASE(S)	has been designe n chord in all are by 1-00-00 wide v by other members er(s) for truss to hanical connectif e capable of withs plift at joint 2. Standard	ed for a liv as where will fit betw s. truss coni on (by oth standing 5	e load of 20.0 a rectangle veen the bott nections. ers) of truss t 2 lb uplift at j	Opsf om to joint						
FORCES	(lb) - Maximum Cor Tension 1-5=0/39, 2-5=0/53	npression/Maximum , 2-6=-44/3, 6-7=-31/	/4,											
	3-7=-23/16													
BOT CHORD	2-4=0/0													
 NULES Wind: AS(Vasd=87n II; Exp B; Exterior (2 zone; cani and right e MWFRS fi grip DOL= TCLL: AS Category Unbalance design. This truss 	CE 7-10; Vult=110mpl nph; TCDL=4.2psf; B(Enclosed; MWFRS (e 2) -2-0-0 to 1-0-0, Inte tilever left and right ey exposed;C-C for mem or reactions shown; L =1.33 CE 7-10; Pf=25.0 psf II; Exp B; Partially Exp ed snow loads have b has been designed ff	h (3-second gust) DDL=6.0psf; h=25ft; nvelope) and C-C rior (1) 1-0-0 to 3-10- posed; end vertical bers and forces & umber DOL=1.33 pla (flat roof snow); b; Ct=1.10 een considered for th or greater of min roof	Cat. -11 left nis nis								A STATE	CECIL CECIL COP WA	DYER SHICLO	

load of 20.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. OFESSIONAL ENGI UNAL. December 21,2020

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2I	Jack-Open	2	1	Job Reference (optional)	R64820174

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:51 ID:aS89ReX?u1etjg0P?QuQwFy726c-Mock Me

Page: 1

Scale = 1:25.2

Loading TCLL (Roof Snow = 25 TCDL BCLL BCDL	5.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/7	TPI2014	CSI TC BC WB Matrix-P	0.57 0.45 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.00	(loc) 2-4 2-4 3	l/defl >731 >366 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS (s	2x4 HF No 2x4 HF No 6-0-0 oc pu Rigid ceilin bracing. size) : Max Horiz : Max Uplift : Max Grav	.2 .2 wood shea urlins. Ig directly 2=0-5-8, 3 Mechanic 2=42 (LC 2=-43 (LC 2=430 (LC	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 10) : 10), 3=-31 (LC 14) : 21) 3=184 (I C 21)	6) (((((((((((((((((((* This truss h on the botton 3-06-00 tall b chord and an Refer to girdé Provide mech bearing plate 3 and 43 lb u D CASE(S)	as been designed a chord in all areas y 1-00-00 wide wil y other members. er(s) for truss to tr nanical connection capable of withsta plift at joint 2. Standard	I for a liv s where II fit betw uss coni n (by oth anding 3	e load of 20.1 a rectangle reen the both nections. ers) of truss i 1 lb uplift at j	0psf om to joint						
FORCES	(lb) - Maxir Tension 1-2=0/53, 2 3-7=-28/36	2=430 (LC 4=127 (LC num Com 2-5=-57/3,	5-6=-34/6, 6-7=-30/	, '8,											
 BOT CHORD NOTES 1) Wind: ASCE Vasd=87mp II; Exp B; Err Exterior (2) zone; cantile and right exp MWFRS for grip DOL=1. 2) TCLL: ASCE Category II; 3) Unbalanced design. 4) This truss ha load of 200 overhangs n 5) This truss ha chord live lo 	2-4=0/0 7-10; Vult h; TCDL=4 tolosed; MV -2-0-0 to 1- ever left an posed;C-C reactions s 33 7-10; Pf= Exp B; Par snow load as been de psf or 2.000 ton-concurr as been de ad noncom	=110mph .2psf; BCI VFRS (en 0-0, Interi d right exp; for memb shown; Lu 25.0 psf (f tially Exp. s have be signed for t times flat ent with o signed for current wit	(3-second gust) DL=6.0psf; h=25ft; C velope) and C-C or (1) 1-0-0 to 5-10- ossed; end vertical I ers and forces & mber DOL=1.33 plat flat roof snow); ; Ct=1.10 en considered for th greater of min roof I roof load of 25.0 ps ther live loads. a 10.0 psf bottom th any other live load	cat. 11 eft is is f on Is.								and a second sec	CECIL I OF WA SOF WA BOTHESISTINA	DYER SHITTER ERED LENGTHE	

> \mathbf{V} MiTek MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

December 21,2020

UNAU.

Job	Truss	Truss Type	Qty	Ply	LONDON DESIGN BUILD	
20-127801T	J2K	Jack-Open Girder	2	1	Job Reference (optional)	R64820175

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Sun Dec 20 15:08:51 ID:eDJqeygbpcBZC_?4OA04ety72?z-Mock Me

6-7-8

Page: 1

0-11-5

MiTek

MiTek USA, Inc. 400 Sunrise Avenue, Suite 270 Roseville, CA 95661

Scale = 1:20.8

1-5-1

Plate Offsets (X, Y): [2:0-4-12,Edge]

	5 (X, I). [1 .0	,_ago	1												
Loading TCLL (Roof Snow TCDL BCLL BCDL	= 25.0)	(psf) 25.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.65 0.48 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.00	(loc) 2-4 2-4 4	l/defl >999 >695 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 185/148 FT = 20%	
LUMBER TOP CHORI BOT CHORI BRACING TOP CHORI BOT CHORI BOT CHORI BOT CHORI BOT CHORI BOT CHORI BOT CHORI BOT CHORI BOT CHORI NOTES 1) Wind: A. Vasd=8: II; Exp E Exterior zone; cc and righ MWFRS grip DOI 2) TCLL: A Categor 3) Unbalan design. 4) This trus chord liv 6) * This trus chord liv 6) * This trus	 D 2x4 HF No.: D 2x6 DF SS D Structural w 6-0-0 oc pu D Rigid ceiling bracing. S (size) 2 Max Horiz 2 Max Grav 2 (lb) - Maxim Tension D 1-2=0/62, 2 D 2-6=0/0, 6-7 SCE 7-10; Vult= 7mph; TCDL=4. t; Enclosed; MW (2) -2-0-0 to 1-0 ntilever left and t exposed; C-C f f or reactions sl L=1.33 SCE 7-10; Pf=2 y II; Exp B; Part fixed snow loads ss has been des 20.0 psf or 2.00 gs non-concurre shas been des te load nonconcurs has been des tall by 1-00-0 to nd any other me 	2 vood shea rlins. g directly 2=0-5-8, 4 2=32 (LC 2=686 (LC hum Com -5=-63/0, 7=0/0, 7-4 =110mph 2-5=-63/0, 7=0/0, 7-4 =110mph 2-5, -6, Interi I right exp for memb hown; Lu 25.0 psf (fi ially Exp. s have be signed for times flat ent with c signed for all areas s wide will embers.	athing directly applied applied or 10-0-0 oc 4= Mechanical 10) 2 20), 4=242 (LC 5) pression/Maximum 3-5=-46/0 8=0/0, 4-8=0/0 (3-second gust) DL=6.0psf; h=25ft; C tyelope) and C-C or (1) 1-0-0 to 2-5-15 posed ; end vertical le tyelope) and C-C or (1) 1-0-0 to 2-5-15 posed ; end vertical le tyelope) and C-C or (1) 1-0-0 to 2-5-15 posed ; end vertical le tyelope) and C-C in (1) 1-0-0 to 2-5-15 posed ; end vertical le tyelope) and C-C or (1) 1-0-0 to 2-5-15 posed ; end vertical le tyelope) and C-C in (1) 1-0-0 to 2-5-15 posed ; end vertical le tyelope) and tyelope) an	7) 8) d or 9) LC 1) at. ; sft e s s ; on s. osf m	Refer to gird Hanger(s) or provided suff down at 4-0 chord. The c (s) is the resp In the LOAD of the truss a AD CASE(S) Dead + Sno Increase=1 Uniform Loa Vert: 1-3 Concentrate Vert: 6=-	er(s) for truss to tr other connection of icient to support of -12, and 16 lb dow lesign/selection of ponsibility of others CASE(S) section, ire noted as front (Standard ww (balanced): Lun 15 ads (lb/ft) =-64, 2-4=-20 ed Loads (lb) 424, 7=-3 (B), 8=-8	uss con device(s oncentra n at 6-C s. loads a F) or ba nber Inc 3 (B)	nections.) shall be ted load(s) 1 -12 on bottor nnection dev oplied to the f ck (B). rease=1.15, F	1 lb n face Plate			A A A A A A A A A A A A A A A A A A A	CECIL ROFESSIONA December	DYER SHARES REED LENGTHON T 21,2020	

