ADDENDUM STRUCTURAL CALCS Derkashani Residence 8151 SE 48th St Mercer Island, WA

Javid Abdi, PE, SE 6810 NE 149 ${ }^{\text {th }}$ St. Kenmore, WA - 98028
Atlas.CSE@gmail.com
206-427-7233

See pages 2 to 5 for updated lateral design (slight adjustment in wind, does not impact original design).
See page 6 updated wind areas.
See pages 7 to 8 for diaphragm design.
See pages 9 to 13 anchorage design.
See pages 14 to 25 for design of force transfer around openings in shearwalls
See pages 26 to 41 for updated framing design including 5 psf rain on snow.
See page 42 for sample uplift calculation at extended roof
See pages 43 to 47 for updated retaining wall design.
See pages 49 to 50 for stair stringer design.
See page 51 for rockery wall design.
See page 52 for railing connection calculation.

New foundation walls retain soil and must either be detailed to allow framing to brace top of wall, or be designed to ensure wall can span horizontally to return walls. The new northwest and southwest walls span 12'-2" between return walls; the west wall is not retaining soil; and the east wall spans 24 '-4". Looking at the FBD below, the ultimate worst case scenario for a pin-pin wall would need to resolve an ASD load of 452 plf at the top of wall (using $1.0 \mathrm{H}+0.7 \mathrm{E}$). Similarly if the wall were to span horizontally, we would essentially have a 7.68 ' wide beam with \#4 @ 12 " oc bottom bars and depth of 8 ". With these values, the wall would have a flexural capacity of $51.4 \mathrm{k}-\mathrm{ft}$. When considering $1.6 \mathrm{H}+1.0 \mathrm{E}$ pressures on the wall above the slab, this equates to a beam with a distributed load of 2460 plf. We can use this to get a maximum allowable wall horizontal span of 13 ', meaning the wall at the east face needs to be detailed to resolve 452 plf force into framing. Provide 3/4" diameter anchor @ 24" oc (936\#/anchor, 468 plf capacity) to get load from top of wall into sill plate; an A35 @ 16" oc (487.5 plf capacity) to get load from sill plate into in-framing joists; and (8)8d nails from sheathing into joist (94\#/nail, 752\# per joist, 564 plf) to allow joists to brace wall.

$O_{o m e}=\frac{8 v h^{2}}{E A b}+\frac{v h}{1000 G_{3}}+\frac{h \lambda_{0}}{b} \quad(4.3-1)$
b - shear wall lengen, rit

> E- modiuls of elasticity of end posts, pss
> $A=$ area of end post cross. section, in. ${ }^{2}$
UP-to-DOWN RUNNNG WALLS

Strong-Wall High-Strength Wood Shearwall

Product Data

Model No.	Panel Information			Anchor Bolts	
	Width (in.)	Height (in.)	Weight (lb.)	Quantity	Diameter (in.)
WSWH12x7	12	84	105	2	1
WSWH18x7	18	84	155	2	1
WSWH12x8	12	96	120	2	1
WSWH18x8	18	96	175	2	1
WSWH24x8	24	96	225	2	1
WSWH12x9	12	108	130	2	1
WSWH18x9	18	108	195	2	1
WSWH24x9	24	108	250	2	1
WSWH12x10	12	120	145	2	1
WSWH18x10	18	120	210	2	1
WSWH24x10	24	120	275	2	1
WSWH12x12	12	144	165	2	1
WSWH18x12	18	144	245	2	1
WSWH24x12	24	144	325	2	1
WSWH18x14	18	168	285	2	1
WSWH24x14	24	168	370	2	1
WSWH24x16	24	192	420	2	1
WSWH18x20	18	240	390	2	1
WSWH24x20	24	240	520	2	1

1. To achieve evaluated panel heights listed in the allowable load table or for those not listed, order the next tallest panel and trim to fit. Minimum trimmed height for all panels is $741 / 22^{\prime \prime}$.
2. All panels are supplied with preattached holdowns, two heavy hex nuts, two heavy bearing plates, one WSWH-TP top connection plate (width based on panel model), required fasteners and installation instructions.
3. All panels are $31 / 2^{\prime \prime}$ thick.

First-Story Installation with Wood Floor System Specify panel height from top of foundation to underside of the top plates or beam.

Place Strong-Wall High-Strength Wood Shearwall over the anchor bolts. Install the heavy bearing plates (provided) on the anchor bolts and secure with the heavy hex nuts (provided). Tighten nuts to finger tight plus $1 / 2$ turn.

- $15 / 8^{\prime \prime}$ wrench required for 1 " heavy hex nut
- WSWH anchor bolts extend $61 / 2^{\prime \prime}$ above the concrete

Foundation design (size and reinforcement) by designer
(4) Simpson Strong-Tie LTP4 or A35 framing angles (two per side)

Strong-Wall High-Strength Wood Shearwall

Rake Wall Application

(cont.)

Strong-Wall High-Strength Wood Shearwall Model No.	Panel Evaluation Height, He (lb.) ${ }^{6}$	Allow Vertical Load, P (lb. $)^{4}$	2,500 psi Concrete						3,000 psi Concrete					
			Seismic ${ }^{3}$			Wind			Seismic ${ }^{3}$			Wind		
			Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in. $)^{7}$	Anchor Tension at Allowable Shear, T (lb. ${ }^{11}$	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in.) ${ }^{7}$	Anchor Tension at Allowable Shear, T (lb.) ${ }^{1}$	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in.) ${ }^{7}$	Anchor Tension at Allowable Shear, T (lb. $)^{11}$	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in.) ${ }^{7}$	Anchor Tension a Allowable Shear, T (lb.) ${ }^{11}$
WSWH12x12	144	1,000	505	0.61	9,495	645	0.80	12,150	505	0.61	9,495	645	0.80	12,150
		4,000	505	0.61	9,495	645	0.80	12,150	505	0.61	9,495	645	0.80	12,150
		7,500	505	0.61	9,495	645	0.80	12,150	505	0.61	9,495	645	0.80	12,150
WSWH18x12	144	1,000	1,705	0.61	19,665	2,195	0.80	25,285	1,705	0.61	19,665	2,195	0.80	25,285
		4,000	1,705	0.61	19,665	2,195	0.80	25,285	1,705	0.61	19,665	2,195	0.80	25,285
		7,500	1,705	0.61	19,665	2,195	0.80	25,285	1,705	0.61	19,665	2,195	0.80	25,285
WSWH24x12	144	1,000	3,525	0.60	29,015	4,305	0.75	35,430	3,525	0.60	29,015	4,475	0.78	36,815
		4,000	3,525	0.60	29,015	4,100	0.72	33,715	3,525	0.60	29,015	4,475	0.78	36,815
		7,500	3,525	0.60	29,015	3,855	0.67	31,715	3,525	0.60	29,015	4,475	0.78	36,815
WSWH18x13	156	1,000	1,490	0.66	18,575	1,910	0.87	23,855	1,490	0.66	18,575	1,910	0.87	23,855
		4,000	1,490	0.66	18,575	1,910	0.87	23,855	1,490	0.66	18,575	1,910	0.87	23,855
		7,500	1,490	0.66	18,575	1,910	0.87	23,855	1,490	0.66	18,575	1,910	0.87	23,855
WSWH24x13	156	1,000	3,110	0.65	27,705	3,975	0.86	35,430	3,110	0.65	27,705	4,025	0.87	35,885
		4,000	3,110	0.65	27,705	3,780	0.81	33,715	3,110	0.65	27,705	4,025	0.87	35,885
		7,500	3,110	0.65	27,705	3,560	0.77	31,715	3,110	0.65	27,705	4,025	0.87	35,885
WSWH18x14	168	1,000	1,180	0.72	15,890	1,515	0.93	20,370	1,180	0.72	15,890	1,515	0.93	20,370
		4,000	1,180	0.72	15,890	1,515	0.93	20,370	1,180	0.72	15,890	1,515	0.93	20,370
WSWH24x14	168	1,000	2,620	0.71	25,160	3,365	0.93	32,290	2,620	0.71	25,160	3,365	0.93	32,290
		4,000	2,620	0.71	25,160	3,365	0.93	32,290	2,620	0.71	25,160	3,365	0.93	32,290
WSWH18x16	192	1,000	985	0.82	15,160	1,265	1.07	19,395	985	0.82	15,160	1,265	1.07	19,395
		4,000	985	0.82	15,160	1,265	1.07	19,395	985	0.82	15,160	1,265	1.07	19,395
WSWH24x16	192	1,000	2,130	0.82	23,345	2,735	1.07	29,990	2,130	0.82	23,345	2,735	1.07	29,990
		4,000	2,130	0.82	23,345	2,735	1.07	29,990	2,130	0.82	23,345	2,735	1.07	29,990
WSWH18x18	216	1,000	750	0.93	12,965	960	1.20	16,550	750	0.93	12,965	960	1.20	16,550
		4,000	750	0.93	12,965	960	1.20	16,550	750	0.93	12,965	960	1.20	16,550
WSWH24x18	216	1,000	1,655	0.93	20,400	2,110	1.20	26,060	1,655	0.93	20,400	2,110	1.20	26,060
		4,000	1,655	0.93	20,400	2,110	1.20	26,060	1,655	0.93	20,400	2,110	1.20	26,060
WSWH18x20	240	1,000	605	1.04	11,640	770	1.33	14,825	605	1.04	11,640	770	1.33	14,825
		4,000	605	1.04	11,640	770	1.33	14,825	605	1.04	11,640	770	1.33	14,825
WSWH24x20	240	1,000	1,350	1.04	18,500	1,720	1.33	23,590	1,350	1.04	18,500	1,720	1.33	23,590
		4,000	1,350	1.04	18,500	1,720	1.33	23,590	1,350	1.04	18,500	1,720	1.33	23,590

[^0]9. Angled SDS screws may be omitted from the WSWH-TP top connection for all panels taller than 100"; see p. 16 as reduced allowable out-of-plane loads may apply.
11. Tabulated anchor tension values assume no resisting vertical load. Anchor tension loads at design shear values and including the effect of vertical load may be determined using the following equation:
$T=[(V \times H) / B]-P / 2$, where:
$\mathrm{T}=$ Anchor tension load (lb .)
$\mathrm{V}=$ Design shear load (lb.)
$\mathrm{P}=$ Applied vertical load (lb.)
$\mathrm{H}=$ Panel height (in.)
B = Moment arm (in.); 7.625" for WSWH12,
12.50" for WSWH18, 17.50" for WSWH24.
10. High-strength anchor bolts are required for anchor tension forces exceeding the allowable load for standard-strength bolts tabulated on pp. 22-23. See pp. 21-29 for WSWH-AB anchor bolt information and anchorage solutions. pp. 21-29 for WSWH-AB anchor bolt information and anchorage solutions

WEST ELEVaTion

Steel Strength
Concrete Breakout
Pullout Strength
Concrete Side-Face Blowout
ACI 17.2.3.4.4 (P. 228)
(a) Tension Steel
17.4.1.2 The nominal strength of an anchor in tension, $N_{s o}$ shall not exceed
$N_{s a}=A_{s e, ~} f_{\text {fuas }}$
(17.4.1.2)
where $A_{m, N}$ is the effective cross-sectional area of an ancho where $A_{m, N}$ is the chective in ${ }^{2}$, and $f_{\text {nat }}$ shall not be taken greater than the smaller of $1.9 \mathrm{f}_{\mathrm{ju}}$ and $125,000 \mathrm{psi}$.

(b) Concrete Breakout $\quad 0.75 \phi N_{c b}$

17.4.2.1 The nominal concrete breakout strength in
ension, $N_{c b}$ of a single anchor or $N_{c o g}$ of a group of anchors, shall not exceed:
(a) For a single anchor

$$
N_{a b}=\frac{A_{s c}}{A_{k s}} \psi_{\alpha, N} \psi_{c, s} \psi_{\varphi, N} N_{b} \quad \text { (17.4.2. 1a) }
$$

(c) Concrete Pullout $\quad 0.75 \phi N_{p}$

17.4.3.1 The nominal pullout strength of a single cast-in, post-installed expansion, and post-installed undercut anchor in tension, $\boldsymbol{N}_{p n}$, shall not exceed

$$
\begin{equation*}
N_{p n}=\psi_{c, p} N_{p} \tag{17.4.3.1}
\end{equation*}
$$

here $\psi_{c p}$ is defined in 17.4.3.6.
17.4.3.4 The pullout strength in tension of a single headed stud or headed bolt, \boldsymbol{N}_{p}, for use in Eq. (17.4.3.1), shall not exceed

$$
N_{p}=8 A_{\text {wo }} f_{c}^{\prime}
$$

(17.4.3.4)
(d) Concrete Side Blowout $\quad 0.75 \phi \mathrm{~N}_{\mathrm{sb}}$
17.4.4 Concrete side-face blowout strength of a headed anchor in tension
1.4.4.1 For a single headed anchor win deep embedment close to an edge ($h_{f} \gg 2.5 c_{a t}$), the nominal side-face blowout strength, $N_{\text {sb }}$, shall not excee

$$
N_{s b}=160 c_{a 1} \sqrt{A_{\text {ivg }}} \lambda_{a} \sqrt{f_{c}^{\prime}}
$$

(17.4.4.1)

If $c_{a 2}$ for the single headed anchor is less than $3 c_{a}$, the
value of N_{∞} shall be multiplied by the factor $\left(1+c_{a /} / c_{a 1}\right) / 4$, where $1.0 \leq c_{a 2} / c_{11} \leq 3.0$
F.4.5, 17.42,6 and 17.427 . projected concrete failure area of singte $\boldsymbol{A}_{\mathrm{Nc}}$ is the of anchors that shall be approximated as the base of the rectilinear geometrical figure that results from projecting the failure surface outward $\mathbf{1 . 5} \boldsymbol{h}_{\text {e }}$ from the centerlines of the anchor, or in the case of a group of anchors, from a line through a row of adjacent anchors. $\boldsymbol{A}_{N c}$ shall not exceed $n A_{\text {Now }}$ where n is the number of anchors in the group that resist tension. $\boldsymbol{A}_{\text {Now }}$ is the projected concrete failure area of a single anchor with an edge distance equal to or greater than

Table 2.2. Anchor Rod Materials						
Material ASTM		Tensile Strength, F_{u} (ksi)	Nominal Tensile Stress, ${ }^{[a]}$ $F_{n t}=0.75 F_{u}(\mathrm{ksi})$	Nominal Shear Stress (X type), ${ }^{\text {[a, }}$, $]$ $F_{m v}=0.50 F_{u}(\mathrm{ksi})$		Maximum Diameter, in.
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{N}} \\ & \hline \end{aligned}$	Gr $36{ }^{\text {P/ }}$	58	43.5	29.0	23.2	4
	Gr 55	75	56.3	37.5	30.0	4
	Gr 105	125	93.8	62.5	50.0	3
A449		120	90.0	60.0	48.0	1
		105	78.8	57.5	42.0	11/2
		90	67.5	45.0	36.0	3
	A36	58	43.5	29.0	23.2	4
	A307	58	43.5	29.0	23.2	4
$\begin{aligned} & \hline \text { A354 } \\ & \text { Gr BD } \end{aligned}$		150	112	75.0	60.0	21/2
		140	105	70.0	56.0	4

 ar plane

Table 3.2. Anchor Rod Con		
Rod Diameter, in.	Rod Area, A_{n} in 2	Bearing Area, in ${ }^{2}$
\%/	0.307	0.689
3/4	0.442	0.906
\%/	0.601	1.22
1	0.785	1.50
11/8	0.994	1.81
11/4	1.23	2.24
11/2	1.77	3.13
1\%	2.41	4.17
2	3.14	5.35
21/4	3.98	6.69
21/2	4.91	8.17
23/4	5.94	9.80
3	7.07	11.4
$31 / 4$	8.30	13.3
$31 / 2$	9.62	15.3
3\%	11.0	17.5
4	12.6	19.9

$A_{\mathrm{Nkc}}=9 h_{e f}{ }^{2}$
(17.4.2.1c)

$\psi_{\omega, v}=\frac{1}{\left(1+\frac{2 e_{k}^{\prime}}{3 h_{f}}\right)}$	(17.4.2.4)
17.4.2.5 The modification factor for edge anchors or anchor groups loaded in tension, calculated as	cts for single mov, shall be
If $c_{\text {c,min }} \geq 1.5 h_{e, \text {, then }} \psi_{\text {col }}=1.0$	(17.4.2.5a)
If $c_{a, \text { mimin }}<1.5 h_{\phi \delta}$ then $\psi_{\text {ed. }}=0.7+0.3 \frac{c_{\text {cand }}}{1.5 h_{\delta}}$	(17.4.2.5b)

17.4.2.6 For anchors located in a region of a concrete member where analysis indicates no cracking at service load levels, the following modification factor shall be permitted:
(b) $\psi_{c N}=1.4$ for post-installed anchors, where the value of \boldsymbol{k}_{c} used in Eq. (17.4.2.2a) is 17
17.4.2.7 The modification factor for post-installed anchor designed for uncracked concrete in accordance with 17.4.2.6 entary reinforcement to control spical ing, $\boldsymbol{\psi}_{c p, .,}$, shall be calculated as
distance $c_{a c}$ as deffined in 17.7 .6
If $c_{a \min } \geq c_{a}$, then $\psi_{\omega_{m}}=1.0$
If $c_{\text {amain }}<c_{\text {and }}$ then $\psi_{\text {go, }}=\frac{c_{\text {amin }}}{c_{\text {ore }}} \quad$ (17.4.2.7b)
ut $\psi_{q, N}$ determined from Eq. (17.4.2.7b) shall not be take less than $1.5 h_{d} c_{o n}$ where the critical distance $c_{a c}$ is define For all
be taken as 1.0 .

Where anchor reincorcement is provided in accordance with 17.4.2.9, no
17.4.2.9 Where anchor reinforcement is developed in accordance with Chapter 25 on both sides of the breakout surface, the design strength of the anchor reinforcement shall be permitted to be used instead of the concrete breakout 0.75 shall be used in the design of the anchor reinforcement.

	$\mathrm{N}_{\text {sa }}$	34.88	Nominal Anchor Tensile Strength, K
	d_{0}	0.875	Anchor Diamter, in
	$A_{\text {brg }}$	1.22	Net Bearing Area of Anchor bolt, in ${ }^{2}$
	$\mathrm{A}_{\text {se, }}$	0.60132	Effective Cross Section Area of Anchor
	$\mathrm{f}_{\text {uta }}$	58,000	Specified Tensile Strength of Anchor, psi
	$\mathrm{A}_{\text {Nc }}$	480	Projected Concrete Failure Area of Single Anchor, in ${ }^{2}$
	$\mathrm{A}_{\text {nco }}$	3,600	Projected Concrete Failure Area of Single Anchor if Not Limited by Edge Distance, in2
	$\psi_{e c, N}$	1.0	Eccentric Modification Factor (17.4.2.4)
	$\psi_{\text {ed, }}$	0.7	Edge Effects Modification (17.4.2.5)
	$\psi_{c, N}$	1.0	Post-Installed Anchor Modification (17.4.2.6)
	$\psi_{\text {cp, }}$	1.0	Cracked Concrete Modification Factor (17.4.3.6)
	$\mathrm{h}_{\text {ef }}$	20.0	Effective Embedment Depth of Anchor, in
	e_{n}^{\prime}	0.0	Eccentiricty of Resulting Tension Force and Centroid of Anchor Group, in
	N_{cb}	14.2	Nominal Concrete Breakout Strength, K
	N_{b}	144,000	Concrete Breakout Strength in Tension of Single Anchor in Cracked Concrete, Ib
	k_{c}	24	Modiciation Factor per 17.4.2.2
	N_{pn}	43.9	Nominal Pullout Strength, K
	N_{p}	43,920	Concrete Pryout Strength of a Single Anchor, Ib
	$\mathrm{N}_{\text {sb }}$	47.4	Nominal Side-Face Blowout, K
	f^{\prime}	4,500	Concrete Strength, psi
	$\lambda_{\text {a }}$	1.0	Lightweight Concrete Modification
	$\mathrm{c}_{\mathrm{a} 1}$	4.0	Minimum Edge Distance, in
	$\mathrm{c}_{\mathrm{a} 2}$	100.0	Maximum Edge Distance, in
			20.997
(a) Tension Steel	$\phi \mathrm{Nsa}_{\text {sa }}$		26.16 K
(b) Concrete Breakout	$\phi \mathrm{N}_{\mathrm{cb}}$		10.66 K
	$\mathrm{A}_{\text {st, } \text { eq }}$		0.47 in ${ }^{2}$
(c) Concrete Pullout	$\phi \mathrm{N}_{\mathrm{pn}}$		32.94 K
(d) Concrete Side Blowout	$\phi N_{\text {sb }}$		35.57 K

Design Summary*					
Req. Sheathing Capacity	98 plf	4-Term Deflection	0.035 in .	3-Term Deflection	0.005 in.
Req. Strap Force	226 lbf	4-Term Story Drift \%	0.001 \%	3-Term Story Drift \%	0.000 \%
Req. HD Force (H)	506 lbf		See Page 2		See Page 3
Req. Shear Wall Anchorage Force ($\mathrm{v}_{\text {max }}$)	55 plf				

Project Information

Code:	2018 IBC	Date: $9 / 30 / 2021$
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	1 - Main to Roof	

Shear Wall Deflection Calculation Variables

Induced Shear Load $\mathrm{V}_{\text {induced }}$: 1826 (lbf)
Sheathing:

Plywood	Sheathing Material
$19 / 32$	Performance Category
APA Rated Sheathing	Grade
	Gt Override
	Ga Overide

Wood End Post Values:		
Species: Doug Fir		
E:	$1.70 \mathrm{E}+06$	(psi)
	Qty	Stud Size
Dimensions:	2	2x6
A:	16.5	(in. ${ }^{2}$)
A Override:		(in. ${ }^{2}$)

Nail Type:		8d common	(penny weight)
	Pier 1	Pier 2	
Nail Spacing:	6	6	(in.)
HD Capacity:	2655	2655	(lbf)
HD Deflection:	0.0071	0.0071	(in.)

Four-Term Equation Deflection Check

$\Delta=\frac{8 v h^{3}}{E A b}+\frac{v h}{G t}+0.75 h e_{n}+d_{a} \frac{h}{b}$					ation 23-2)
Sheathing: Nail:	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	
	19/32	19/32	19/32	19/32	
	8d common	8d common	8d common	8d common	
$\mathrm{v}_{\text {induced }}$:	91	91	91	91	(plf)
E:	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	1.70E+06	$1.70 \mathrm{E}+06$	(psi)
h:	9.17	8.00	8.00	9.17	(ft)
A:	16.5	16.5	16.5	16.5	(in. ${ }^{2}$)
Gt:	28,500	28,500	28,500	28,500	(lbf/in.)
Nail Spacing:	6	6	6	6	(in.)
V :	45	45	45	45	(plf)
e_{n} :	0.0005	0.0005	0.0005	0.0005	(in.)
b:	15.54	15.54	4.63	4.63	(ft)
HD Capacity:	2655	2655	2655	2655	(lbf)
HD Defl:	0.0071	0.0071	0.0071	0.0071	(in.)

Check Total Deflection of Wall System

Pier 1 (left)				Pier 1 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.001	0.029	0.003	0.001	0.001	0.025	0.003	0.001
		Sum	0.035			Sum	0.030
Pier 2 (left)				Pier 2 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.003	0.025	0.003	0.003	0.004	0.029	0.003	0.004
		Sum	0.034			Sum	0.041

Total
Defl.
0.035
0.0013

Project Information

Code:	2018 IBC	Date: $9 / 30 / 2021$
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	1- Main to Roof	

Three-Term Equation Deflection Check

Sheathing and Nail Type are not a valid combination. Please review Nail Type input.

Check Total Deflection of Wall System

Pier 1 (left)			Pier 1 (right)							
Term 1 Bending	Term 2 Shear	Term 3 Fastener	Term 1 Bending	Term 2 Shear	Term 3 Fastener					
0.001	Sum			0.003	Sum			0.002		
Pier 2 (left)			Pier 2 (right)							
Term 1	Term 2	Term 3	Term 1	Term 2	Term 3					
Bending	Shear	Fastener	Bending	Shear	Fastener					
0.003		0.003	0.004		0.004					
Sum							0.006		Sum	0.009

Total Defl.
0.005
0.0002

Line 1: vc1(ha1+hb1)+V1(ho1)=H?		96	637	733 lbf
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?	733	96	637	0
Line 3: va1(ha1+hb1)-vc2(ha1+hb1)-V1(ho1)=0?	733	96	637	0
Line 4: vc2(ha1+hb1)+V2(ho1)=H?		96	637	733 lbf

Design Summary*					
Req. Sheathing Capacity	200 plf	4-Term Deflection	0.166 in .	3-Term Deflection	0.094 in.
Req. Strap Force	1222 lbf	4-Term Story Drift \%	0.007 \%	3-Term Story Drift \%	0.004 \%
Req. HD Force (H)	733 lbf		See Page 2		See Page 3
Req. Shear Wall Anchorage Force ($\mathrm{v}_{\text {max }}$)	86 plf				

[^1]Project Information

Code:	2018 IBC	Date: 9/30/2021
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	6- Lower to Main	

Shear Wall Deflection Calculation Variables

Induced Shear Load $\mathrm{V}_{\text {induced }}$: 2853 (Ibf)
Sheathing:

Plywood	Sheathing Material		
$19 / 32$	Performance Category		
APA Rated Sheathing	Grade		
\square Gt Override Ga Overide			Ga
:---			

Wood End Post Values:		
Species:	Doug Fir	
	1.70E+06	(psi)
	Qty	Stud Size
Dimensions:	2	2x6
A:	16.5	(in. ${ }^{2}$)
A Override:		(in. ${ }^{2}$)

Nail Type:		8d common	(penny weight)
	Pier 1	Pier 2	
Nail Spacing:	6	6	(in.)
HD Capacity:	2500	2500	(lbf)
HD Deflection:	0.1134	0.1134	(in.)

Four-Term Equation Deflection Check

Check Total Deflection of Wall System

Pier 1 (left)				Pier 1 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.003	0.056	0.026	0.053	0.001	0.043	0.020	0.031
		Sum	0.139			Sum	0.095
Pier 2 (left)				Pier 2 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.004	0.043	0.020	0.101	0.009	0.056	0.026	0.172
		Sum	0.168			Sum	0.264

Total
Defl.
0.166
0.0065

Project Information

Code:	2018 IBC	Date: $9 / 30 / 2021$
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	6 - Lower to Main	

Three-Term Equation Deflection Check

Sheathing:Nail:	$\delta_{\mathrm{sw}}=\frac{8 \mathrm{vh}^{3}}{\mathrm{EAb}}$	$\frac{\mathrm{vh}}{1000 \mathrm{G}_{\mathrm{a}}}$	$\frac{\mathrm{h} \Delta_{\mathrm{a}}}{\mathrm{~b}}$	(4.3	
	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	
	19/32	19/32	19/32	19/32	
	8d common	8d common	8d common	8d common	
$\mathrm{v}_{\text {induced }}$:	188	188	188	188	
E:	1.70E+06	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	(psi)
h:	8.50	6.50	6.50	8.50	(ft)
A:	16.5	16.5	16.5	16.5	(in. ${ }^{2}$)
Ga:	N/A	N/A	N/A	N/A	(kips/in.)
b:	11.58	11.58	3.58	3.58	(ft)
HD Capacity:	2500	2500	2500	2500	(lbf)
HD Defl:	0.1134	0.1134	0.1134	0.1134	(in.)

Sheathing and Nail Type are not a valid combination. Please review Nail Type input.

Check Total Deflection of Wall System

Pier 1 (left)			Pier 1 (right)		
Term 1 Bending	Term 2 Shear	Term 3 Fastener	Term 1 Bending	Term 2 Shear	Term 3 Fastener
0.003		0.053	0.001		0.031
	Sum	0.056		Sum	0.032
Pier 2 (left)			Pier 2 (right)		
Term 1 Bending	Term 2 Shear	Term 3 Fastener	Term 1 Bending	Term 2 Shear	Term 3 Fastener
0.004		0.101	0.009		0.172
	Sum	0.105		Sum	0.181

Total Defl.
0.094
0.0037

[^2]Project Information

Code:	2018 IBC	Date: $9 / 30 / 2021$
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	E - Lower to Main (1)	

Shear Wall Deflection Calculation Variables

Induced Shear Load $\mathrm{V}_{\text {induced: }}$: 4037 (lbf)
Sheathing:

Plywood	Sheathing Material		
$19 / 32$	Performance Category		
APA Rated Sheathing	Grade		
\square Gt Override Ga Overide			Ga
:---			

Wood End Post Values:		
Species:	Doug Fir	
	1.70E+06	(psi)
	Qty	Stud Size
Dimensions:	2	2×6
A:	16.5	(in. ${ }^{2}$)
A Override:		(in. ${ }^{2}$)

Nail Type:	8d common	(penny weight)
	Pier 1	Pier 2
Nail Spacing:	6	6
HD Capacity:	2500	2500
HD Deflection:	0.1134	0.1134

Four-Term Equation Deflection Check

$\Delta=\frac{8 v h^{3}}{E A b}+\frac{v h}{G t}+0.75 h e_{n}+d_{a} \frac{h}{b}$					ation 23-2)
Sheathing: Nail:	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	
	19/32	19/32	19/32	19/32	
	8d common	8d common	8d common	8d common	
$\mathrm{v}_{\text {induced }}$:	384	384	384	384	(plf)
E:	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	(psi)
h:	8.50	6.50	6.50	8.50	(ft)
A:	16.5	16.5	16.5	16.5	(in. ${ }^{2}$)
Gt:	28,500	28,500	28,500	28,500	(lbf/in.)
Nail Spacing:	6	6	6	6	(in.)
V :	192	192	192	192	(plf)
e_{n} :	0.0357	0.0357	0.0357	0.0357	(in.)
b:	4.50	4.50	6.00	6.00	(ft)
HD Capacity:	2500	2500	2500	2500	(lbf)
HD Defl:	0.1134	0.1134	0.1134	0.1134	(in.)

Check Total Deflection of Wall System

Pier 1 (left)				Pier 1 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.015	0.115	0.228	0.280	0.007	0.088	0.174	0.164
		Sum	0.637			Sum	0.432
Pier 2 (left)				Pier 2 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.005	0.088	0.174	0.123	0.011	0.115	0.228	0.210
		Sum	0.390			Sum	0.564

Total Defl.
0.506
0.0198

Project Information

Code:	2018 IBC	Date: $9 / 30 / 2021$
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	E - Lower to Main (1)	

Three-Term Equation Deflection Check

	$\delta_{\mathrm{sw}}=\frac{8 \mathrm{vh}^{3}}{\mathrm{EAb}}$	$\frac{\mathrm{vh}}{1000 \mathrm{G}_{\mathrm{a}}}$	$\frac{\mathrm{h} \Delta_{\mathrm{a}}}{\mathrm{~b}}$	(4.3-1)	
	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	
Sheathing:	19/32	19/32	19/32	19/32	
Nail:	8d common	8d common	8d common	8d common	
$\mathrm{v}_{\text {induced }}$:	384	384	384	384	(plf)
E:	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	(psi)
h:	8.50	6.50	6.50	8.50	(ft)
A:	16.5	16.5	16.5	16.5	(in. ${ }^{2}$)
Ga:	N/A	N/A	N/A	N/A	(kips/in.)
b:	4.50	4.50	6.00	6.00	(ft)
HD Capacity:	2500	2500	2500	2500	(lbf)
HD Defl:	0.1134	0.1134	0.1134	0.1134	(in.)

Sheathing and Nail Type are not a valid combination. Please review Nail Type input.

Check Total Deflection of Wall System

Pier 1 (left)			Pier 1 (right)								
Term 1 Bending	Term 2 Shear	Term 3 Fastener	Term 1 Bending	Term 2 Shear	Term 3 Fastener						
0.015		0.280	0.007		0.164						
Sum			0.295	Sum			0.170				
Pier 2 (left)											
Term 1 Bending	Term 2 Shear	Term 3 Fastener	Term 1 Bending	Term 2 Shear	Term 3 Fastener						
0.005		0.123	0.011		0.210						
Sum							0.128	Sum			0.221

Total Defl.
0.204
0.0080

Check Summary of Shear Values for One Opening

Line 1: vc1(ha1+hb1)+V1(ho1)=H?		-60	1301	1241 lbf
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?	1241	-60	1301	0
Line 3: va1(ha1+hb1)-vc2(ha1+hb1)-V1(ho1)=0?	1241	-60	1301	0
Line 4: vc2(ha1+hb1)+V2(ho1)=H?		-60	1301	1241 lbf

Design Summary*					
Req. Sheathing Capacity	338 plf	4-Term Deflection	0.545 in.	3-Term Deflection	0.243 in.
Req. Strap Force	2189 lbf	4-Term Story Drift \%	0.021 \%	3-Term Story Drift \%	0.010 \%
Req. HD Force (H)	1241 lbf		See Page 2		See Page 3
Req. Shear Wall Anchorage Force ($\mathrm{v}_{\text {max }}$)	146 plf				

Sheathing and Nail Type are not a valid combination. Please review Nail Type input.
*The Design Summary assumes that the shear wall is designed as blocked.

Project Information

Code:	2018 IBC	Date: $9 / 30 / 2021$
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	E - Lower to Main (2)	

Shear Wall Deflection Calculation Variables

Induced Shear Load $\mathrm{V}_{\text {induced }}:$	4101	(lbf)

Sheathing:

Plywood	Sheathing Material		
$19 / 32$	Performance Category		
APA Rated Sheathing	Grade		
\square Gt Override Ga Overide			Ga
:---			

Wood End Post Values:		
Species:	Doug Fir	
	1.70E+06	(psi)
	Qty	Stud Size
Dimensions:	2	2×6
A:	16.5	(in. ${ }^{2}$)
A Override:		(in. ${ }^{2}$)

Nail Type:		8d common	(penny weight)
		Pier 1	Pier 2
Nail Spacing:	6	6	(in.)
HD Capacity:	2500	2500	(lbf)
HD Deflection:	0.1134	0.1134	(in.)

Four-Term Equation Deflection Check

$\Delta=\frac{8 v h^{3}}{E A b}+\frac{v h}{G t}+0.75 h e_{n}+d_{a} \frac{h}{b}$					uation 23-2)
	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	
Sheathing:	19/32	19/32	19/32	19/32	
Nail:	8d common	8d common	8d common	8d common	
$\mathrm{v}_{\text {induced }}$:	384	384	384	384	(plf)
E:	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	(psi)
h:	8.50	6.50	6.50	8.50	(ft)
A:	16.5	16.5	16.5	16.5	(in. ${ }^{2}$)
Gt:	28,500	28,500	28,500	28,500	(lbf/in.)
Nail Spacing:	6	6	6	6	(in.)
V :	192	192	192	192	(plf)
e_{n} :	0.0357	0.0357	0.0357	0.0357	(in.)
b:	7.67	7.67	3.00	3.00	(ft)
HD Capacity:	2500	2500	2500	2500	(lbf)
HD Defl:	0.1134	0.1134	0.1134	0.1134	(in.)

Check Total Deflection of Wall System

Pier 1 (left)				Pier 1 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.009	0.115	0.228	0.164	0.004	0.088	0.174	0.096
		Sum	0.515			Sum	0.362
Pier 2 (left)				Pier 2 (right)			
Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-1 } \end{gathered}$	Term 1 Bending	Term 2 Shear	Term 3 Fastener	$\begin{gathered} \hline \text { Term } 4 \\ \text { HD-2 } \end{gathered}$
0.010	0.088	0.174	0.246	0.022	0.115	0.228	0.420
		Sum	0.517			Sum	0.785

Total
Defl.
0.545
0.0214

Project Information

Code:	2018 IBC	Date: $9 / 30 / 2021$
Designer:	JDA	
Client:	CenterLine	
Project:	Derkashani	
Wall Line:	E - Lower to Main (2)	

Three-Term Equation Deflection Check

	$\delta_{\mathrm{sw}}=\frac{8 \mathrm{vh}^{3}}{\mathrm{EAb}}$	$\frac{\mathrm{vh}}{1000 \mathrm{G}_{\mathrm{a}}}$	$\frac{\mathrm{h} \Delta_{\mathrm{a}}}{\mathrm{~b}}$	(4.3-1)	
	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	
Sheathing:	19/32	19/32	19/32	19/32	
Nail:	8d common	8d common	8d common	8d common	
$\mathrm{v}_{\text {induced }}$:	384	384	384	384	(plf)
E:	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	$1.70 \mathrm{E}+06$	(psi)
h:	8.50	6.50	6.50	8.50	(ft)
A:	16.5	16.5	16.5	16.5	(in. ${ }^{2}$)
Ga:	N/A	N/A	N/A	N/A	(kips/in.)
b:	7.67	7.67	3.00	3.00	(ft)
HD Capacity:	2500	2500	2500	2500	(lbf)
HD Defl:	0.1134	0.1134	0.1134	0.1134	(in.)

Sheathing and Nail Type are not a valid combination. Please review Nail Type input.

Check Total Deflection of Wall System

Pier 1 (left)			Pier 1 (right)		
Term 1	Term 2	Term 3	Term 1	Term 2	Term 3
Bending	Shear	Fastener	Bending	Shear	Fastener
0.009		0.164	0.004		0.096
Sum 0.173				Sum	0.100
			Pier 2 (right)		
Term 1	Term 2	Term 3	Term 1	Term 2	Term 3
Bending	Shear	Fastener	Bending	Shear	Fastener
0.010		0.246	0.022		0.420
	Sum	0.256		Sum	0.442

Total Defl.
0.243
0.0095

		J OB SUMMARY REPORT Derkashani	
Roof			
Member Name	Results	Current Solution	Comments
1	Passed	2 piece(s) 2×6 DF No. 1	
2	Failed	2 piece(s) $13 / 4$ " $\times 18$ " 2.0E Microllam® ${ }^{\text {® }}$ LVL	Multiple Failures/Errors
3	Passed	2 piece(s) 2×8 DF No. 1	
4	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 7$ 1/2" 24F-V4 DF Glulam	
5	Failed	3 piece(s) $13 / 4 " \times 20$ 2.0E Microllam® LVL	Multiple Failures/Errors
6	Passed	3 piece(s) $13 / 4^{\prime \prime} \times 14^{\prime \prime} 2.0 \mathrm{E}$ Microllam® LVL	
7	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 18{ }^{\text {" } 2.0 E \text { Microllam® }{ }^{\text {® }} \text { LVL }}$	
8	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 101 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
9	Passed	2 piece(s) 2×8 DF No. 1	
10	Passed	2 piece(s) 2×10 DF No. 1	
11	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 101 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
12	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 9$ " $24 F-V 4$ DF Glulam	
13	Passed	2 piece(s) 2×4 DF No. 1	
14	Passed	2 piece(s) 2×6 DF No. 1	
15	Passed	2 piece(s) 2×6 DF No. 1	

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 1
2 piece(s) 2×6 DF No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	1036 @ 1 1/2"	5625 (3.00")	Passed (18\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Shear (lbs)	616 @ $81 / 2^{\prime \prime}$	2277	Passed (27\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	781 @ 1'9"	1884	Passed (41\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.013 @ 1'9"	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.021 @ 1' 9"	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	
1- Trimmer - DF	$3.00 "$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	419	617	1036	None
2 - Trimmer - DF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	419	617	1036	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 6 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 6 \mathrm{o} ~ \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $3^{\prime} 6 "$	N/A	4.2	--	
1 - Uniform (PSF)	0 to $3^{\prime} 6 "$	$11^{\prime \prime} 9 "$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 2
2 piece(s) 1 3/4" x 18" 2.0E Microllam® LVL
Right cantilever exceeds the maximum braced cantilever length of 7'. ok, braced by sheathing/framing An excessive uplift of -7063 lbs at support located at $11 / 2^{\prime \prime}$ failed this product. detail accordingly

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$15233 @ 4^{\prime}$	$30625\left(14.00^{\prime \prime}\right)$	Passed (50\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$7887 @ 1^{\prime} 11^{\prime \prime}$	13766	Passed (57\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Moment (Ft-lbs)	$-30803 @ 4^{\prime}$	33424	Passed (92\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.380 @ 14^{\prime} 1^{\prime \prime}$	1.008	Passed (2L/636)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.652 @ 14^{\prime} 1^{\prime \prime}$	1.344	Passed (2L/370)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - DF	3.00"	3.00"	1.50"	-2802	-4261	-7063	Blocking
2 - Stud wall - DF	14.00"	14.00"	6.96"	6371	8862	15233	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} 11^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $14^{\prime} 1^{\prime \prime}$	N/A	18.4	--	
1 - Uniform (PSF)	0 to $14^{\prime} 1^{\prime \prime}$ (Front)	$11^{\prime} 9 \prime$	20.0	30.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 3
2 piece(s) 2×8 DF No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1714 @ 11 / 2^{\prime \prime}$	$5625\left(3.00{ }^{\prime \prime}\right)$	Passed (30\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$1208 @ 101 / 4^{\prime \prime}$	3002	Passed (40\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Member Type : Header					
Moment (Ft-lbs)	$2268 @ 2^{\prime} 1011 / 16^{\prime \prime}$	3022	Passed (75\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.046 @ 2^{\prime} 1011 / 16^{\prime \prime}$	0.184	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.077 @ 2^{\prime} 1011 / 16^{\prime \prime}$	0.277	Passed (L/861)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	
1- Trimmer - DF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	695	1019	1714	None
2 - Trimmer - DF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	695	1019	1714	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 9 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 9 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $5^{\prime} 93 / 8 "$	$\mathrm{~N} / \mathrm{A}$	5.5	--	
1 - Uniform (PSF)	0 to $5^{\prime} 93 / 8^{\prime \prime}$	$11^{\prime} 9 \prime$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 4
1 piece(s) 3 1/2" x 7 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3568 @ 11/2"	6825 (3.00")	Passed (52\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	2632 @ $101 / 2^{\prime \prime}$	5333	Passed (49\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	5510 @ 3' 4"	7547	Passed (73\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.110 @ 3' 4"	0.214	Passed (L/700)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.184 @ 3' 4"	0.321	Passed (L/418)	--	1.0 D + 1.0 S (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 5^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	
1- Trimmer - DF	$3.00 "$	$3.00 "$	$1.57^{\prime \prime}$	1440	2128	3568	None
2 - Trimmer - DF	$3.00 "$	$3.00 "$	$1.57^{\prime \prime}$	1440	2128	3568	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 88^{\prime \prime} 0 / c$	
Bottom Edge (Lu)	$6^{\prime} 88^{\prime \prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $6^{\prime} 8^{\prime \prime}$	N/A	6.4	--	
1 - Uniform (PSF)	0 to $6^{\prime} 8^{\prime \prime}$	$21^{\prime} 33 / 8^{\prime \prime}$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 5
3 piece(s) 1 3/4" \times 20" 2.0E Microllam® LVL
Right cantilever exceeds the maximum braced cantilever length of 7'. ok, braced by sheathing/framing An excessive uplift of -1126 lbs at support located at $11 / 2^{\prime \prime}$ failed this product. detail accordingly

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$16904 @ 12^{\prime} 77^{\prime \prime}$	$19688\left(6.00{ }^{\prime \prime}\right)$	Passed (86\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$7147 @ 10^{\prime} 8^{\prime \prime}$	22943	Passed (31\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$-52472 @ 12^{\prime} 7^{\prime \prime}$	61017	Passed (86\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.654 @ 25^{\prime}$	1.242	Passed (2L/456)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~S} \mathrm{(Alt} \mathrm{Spans)}$
Total Load Defl. (in)	$1.105 @ 25^{\prime}$	1.656	Passed (2L/270)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Stud wall - SPF	3.00"	3.00"	1.50"	48	1272/-1174	$\begin{gathered} \hline 1320 /- \\ 1174 \end{gathered}$	Blocking
2 - Stud wall - DF	6.00"	6.00"	5.15"	7219	9685	16904	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$25^{\prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$7{ }^{\prime} 6$ " o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 25^{\prime}	N/A	30.6	--	
1 - Uniform (PSF)	0 to 25^{\prime} (Front)	13^{\prime}	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 6
3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3787 @ 11 / 2^{\prime \prime}$	$11813(3.00 ")$	Passed (32\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$2730 @ 11^{\prime \prime}$	12569	Passed (22\%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	$16342 @ 10^{\prime} 71 / 2^{\prime \prime}$	32749	Passed (50\%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	$0.115 @ 10^{\prime} 71 / 2^{\prime \prime}$	0.700	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	$0.680 @ 10^{\prime} 71 / 2^{\prime \prime}$	1.050	Passed (L/370)	--	1.0 D + 1.0 S (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00"	3.00"	1.50"	3150	638	3788	None
2 - Trimmer - DF	3.00"	3.00 "	1.50"	3150	638	3788	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} 2 \mathrm{\prime} \mathrm{\prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$21^{\prime} 3 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $21^{\prime} 3 \prime \prime$	$\mathrm{~N} / \mathrm{A}$	21.5	--	
1 - Uniform (PSF)	0 to $21^{\prime} 33^{\prime \prime}$	2^{\prime}	20.0	30.0	Default Load
2 - Uniform (PSF)	0 to $21^{\prime} 3 \prime$	$11^{\prime \prime} 9 \prime$	20.0	-	Weight of Hung Door

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 7

2 piece(s) 1 3/4" x 18" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5622 @ 22^{\prime} 711 / 16^{\prime \prime}$	$7875\left(3.000^{\prime \prime}\right)$	Passed (71\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$3053 @ 24^{\prime} 33 / 16^{\prime \prime}$	13766	Passed (22\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Member Type : Header					
Moment (Ft-lbs)	$-12399 @ 22^{\prime} 711 / 16^{\prime \prime}$	44566	Passed (28\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.186 @ 28^{\prime} 63 / 16^{\prime \prime}$	0.392	Passed (2L/758)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.279 @ 28^{\prime} 63 / 16^{\prime \prime}$	0.587	Passed (2L/506)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00"	3.00"	1.50"	208	181/-151	$\begin{gathered} 389 /- \\ 151 \end{gathered}$	None
2 - Trimmer - DF	3.001	3.00 "	$2.14{ }^{\prime \prime}$	2447	3176	5623	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$28^{\prime} 6 \mathrm{\prime} \mathrm{\prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 1$ " o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $28^{\prime} 63 / 16^{\prime \prime}$	N / A	18.4	--	
1 - Uniform (PSF)	0 to $28^{\prime} 63 / 16^{\prime \prime}$	1^{\prime}	20.0	30.0	Default Load
2 - Uniform (PSF)	$22^{\prime} 63 / 16^{\prime \prime}$ to $28^{\prime} 63 / 16^{\prime \prime}$	13^{\prime}	20.0	30.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 8
1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4460 @ 1 1/2"	6825 (3.00")	Passed (65\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	3618 @ 1' 1 1/2"	7466	Passed (48\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	12736 @ 5' 11 1/2"	14792	Passed (86\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.304 @ 5' 11 1/2"	0.389	Passed (L/460)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.513 @ 5' 11 1/2"	0.583	Passed (L/273)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=11^{\prime} 8^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00"	3.00 "	1.96"	1816	2644	4460	None
2 - Trimmer - DF	3.00 "	3.00 "	1.96"	1816	2644	4460	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 11^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $11^{\prime} 11^{\prime \prime}$	N / A	8.9	--	
1 - Uniform (PSF)	0 to $11^{\prime} 11^{\prime \prime}$	$14^{\prime} 91 / 2^{\prime \prime}$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 9
2 piece(s) 2×8 DF No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	3625 @ 3' $61 / 2^{\prime \prime}$	5625 (3.00")	Passed (64\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Shear (lbs)	2883 @ 2'93/4"	3002	Passed (96\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	2264 @ 2' 11"	3022	Passed (75\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.014 @ 1' 11 5/16"	0.114	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.023 @ 1' 11 5/16"	0.171	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00"	3.00 "	1.50"	439	643	1082	None
2 - Trimmer - DF	3.00"	3.00 "	1.93 "	1456	2169	3625	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 8 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 8{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $3^{\prime} 8^{\prime \prime}$	N / A	5.5	--	
1 - Tapered (PSF)	0 to $2^{\prime} 11^{\prime \prime}$	3^{\prime} to $4^{\prime} 41 / 2^{\prime \prime}$	20.0	30.0	Default Load
2 - Point (Ib)	$2^{\prime} 11^{\prime \prime}$	N / A	1660	2490	83 SF from Truss Girder

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

2 piece(s) 2×10 DF No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	2433 @ 1 1/2"	5625 (3.00")	Passed (43\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Shear (lbs)	1669 @ 1' 1/4"	3830	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	3656 @ 3' 3"	4510	Passed (81\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.045 @ 3' 3"	0.208	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.076 @ 3' 3"	0.313	Passed (L/981)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00"	3.00"	1.50 "	987	1446	2433	None
2 - Trimmer - DF	3.00"	3.00 "	1.50"	987	1446	2433	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 6 \mathrm{\prime} \circ \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 6 \mathrm{o}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $6^{\prime} 6^{\prime \prime}$	N/A	7.0	--	
1 - Uniform (PSF)	0 to $6^{\prime} 6^{\prime \prime}$	$14^{\prime} 10^{\prime \prime}$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 11
1 piece(s) 3 1/2" x 10 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4191 @ 1 1/2"	6825 (3.00")	Passed (61\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	3347 @ 1' 1 1/2"	7466	Passed (45\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	11182 @ 5' ${ }^{\prime \prime}$	14792	Passed (76\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.234 @ 5' 7"	0.364	Passed (L/560)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.395 @ 5' 7"	0.546	Passed (L/332)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=10^{\prime} 11^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00 "	3.00 "	1.84"	1707	2485	4192	None
2 - Trimmer - DF	3.00 "	3.00 "	1.84"	1707	2485	4192	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 2^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 2^{\prime \prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $11^{\prime} 2^{\prime \prime}$	N / A	8.9	--	
1 - Uniform (PSF)	0 to $11^{\prime} 2^{\prime \prime}$	$14^{\prime} 10^{\prime \prime}$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 12
1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4059 @ 6' $61 / 2^{\prime \prime}$	6825 (3.00")	Passed (59\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	3830 @ 5' 8"	6400	Passed (60\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	8650 @ 4' 2 7/8"	10868	Passed (80\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.089 @ 3' $51 / 16^{\prime \prime}$	0.214	Passed (L/861)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.150 @ 3' 5 1/16"	0.321	Passed (L/514)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 5^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00"	3.00 "	1.63 "	1500	2211	3711	None
2 - Trimmer - DF	3.00 "	3.00 "	1.78"	1639	2420	4059	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6 ' $8 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 88^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0-Self Weight (PLF)	0 to $6^{\prime} 8^{\prime \prime}$	N/A	7.7	--	
1- Uniform (PSF)	0 to $4^{\prime} 27 / 8^{\prime \prime}$	$14^{\prime} 7 \prime \prime$	20.0	30.0	Default Load
2- Point (Ib)	$4^{\prime} 27 / 8^{\prime \prime}$	N/A	1620	2430	81 SF from truss girder
3 - Tapered (PSF)	$4^{\prime} 27 / 8^{\prime \prime}$ to $6^{\prime} 8^{\prime \prime}$	$5^{\prime} 39 / 16^{\prime \prime}$ to $4^{\prime} 2$ $1 / 2^{\prime \prime}$	20.0	30.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 13
2 piece(s) 2×4 DF No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	479 @ 1 1/2"	5625 (3.00")	Passed (9\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Shear (lbs)	330 @ 6 1/2"	1449	Passed (23\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	361 @ 1'9"	880	Passed (41\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.022 @ 1'9"	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.038 @ 1' 9"	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	
1- Trimmer - DF	$3.00 "$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	194	284	478	None
2 - Trimmer - DF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	194	284	478	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 6 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 6 \mathrm{o} ~ \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $3^{\prime} 6 "$	N/A	2.7	--	
1 - Uniform (PSF)	0 to $3^{\prime} 6 "$	$5^{\prime \prime} 5^{\prime \prime}$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 14
2 piece(s) 2×6 DF No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	1283 @ 1 1/2"	5625 (3.00")	Passed (23\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Shear (lbs)	764 @ $81 / 2^{\prime \prime}$	2277	Passed (34\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	968 @ 1'9"	1884	Passed (51\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.016 @ 1'9"	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.026 @ 1' 9"	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	
1- Trimmer - DF	$3.00 "$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	518	766	1284	None
2 - Trimmer - DF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	518	766	1284	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 6 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 6 \mathrm{o} ~ \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $3^{\prime} 6 "$	N/A	4.2	--	
1 - Uniform (PSF)	0 to $3^{\prime} 6 "$	$14^{\prime \prime} 7^{\prime \prime}$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 15
2 piece(s) 2×6 DF No. 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	1210 @ 1 1/2"	5625 (3.00")	Passed (22\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Shear (lbs)	829 @ $81 / 2^{\prime \prime}$	2277	Passed (36\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Moment (Ft-lbs)	1214 @ 2' 3"	1884	Passed (64\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.033 @ 2' 3'	0.142	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Total Load Defl. (in)	0.056 @ 2' 3'	0.213	Passed (L/914)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - DF	3.00"	3.00"	1.50"	490	720	1210	None
2 - Trimmer - DF	3.00 "	3.00 "	1.50"	490	720	1210	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 6 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 6 \mathrm{o}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 6^{\prime \prime}$	N/A	4.2	--	
1 - Uniform (PSF)	0 to $4^{\prime} 6^{\prime \prime}$	$10^{\prime} 8 "$	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, Truss Uplift Overhang
1 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL @ 24" OC
Right cantilever exceeds the maximum braced cantilever length of 7 '. OK, braced by sheathing

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2634 @ 26^{\prime} 41 / 4^{\prime \prime}$	$6016\left(5.50^{\prime \prime}\right)$	Passed (44\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Shear (lbs)	$1154 @ 24^{\prime} 111 / 2^{\prime \prime}$	5353	Passed (22\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Moment (Ft-lbs)	$-5686 @ 26^{\prime} 41 / 4^{\prime \prime}$	10880	Passed (52\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.429 @ 34^{\prime} 7^{\prime \prime}$	0.823	Passed (2L/460)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.464 @ 34^{\prime} 7^{\prime \prime}$	1.097	Passed (2L/426)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 4% increase in the moment capacity has been added to account for repetitive member usage.
- Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.
- -207 lbs uplift at support located at 1' 5 3/4". Strapping or other restraint may be required.
- -243 Ibs uplift at support located at $26^{\prime} 41 / 4^{\prime \prime}$. Strapping or other restraint may be required.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Snow	Wind	Total	
1-Stud wall - DF	$5.50 "$	$5.50 "$	$1.50^{\prime \prime}$	270	756	$20 /-614$	$1046 /-$ 614	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50 "$	$2.41^{\prime \prime}$	752	1882	-1156	$2634 /-$ 1156	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$8^{\prime} 8 \mathrm{o} \circ \mathrm{c}$	

\bullet •Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Spacing	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	$\begin{aligned} & \text { Wind } \\ & (1.60) \end{aligned}$	Comments
1 - Uniform (PSF)	0 to 34' ${ }^{\prime \prime}$	24 "	12.0	30.0	-22.0	Default Load
2 - Uniform (PSF)	26' 7 " to 34' 7 "	24 "	12.0	30.0	-10.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233

CANTILEVER RETAINING WALL EXTERNAL STABILITY

limitations:	uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)						
reference:	Nilson \& Winter, Design of Concrete Structures, 11th Edition, page 680						
file author:	S. Frech	last modified:	4/25/2002				
SOIL DATA							
w phi del	130	(pcf) (deg) (deg)	soil unit weight soil internal angle of friction surface angle incline	Coeff. Friction			
	35			Unit Weight	Int Friction	w. Conc	Soil
	0			110-120	33-40	0.5-0.6	Sand or gravel, no fines
	0.5		coeff. friction w/Concrete	120-130	25-35	0.4-0.5	Sand or gravel, w/f fines
	0.819		cosine(phi)	110-120	23-30	0.3-0.4	Silty sand, high clay
	1.000		cosine(del)	100-120	25-35	0.2-0.4	Medium or stiff clay
Ca	0.271	35.23 psf	coeff. of active pressure	90-110	20-25	0.2-0.3	Soft clay, silt

WALL GEOMETRY			
H1	4.3333333	(ft)	soil retained
H2	0.1666667	(ft)	soil depth above toe
H3	0.8333333	(ft)	footing thickness
H4	1	(ft)	passive pressure soil depth
B1	0.6666667	(ft)	wall width
B2	2	(ft)	toe width
B3	0	(ft)	heel width
H	5.3333333	(ft)	total height
B	2.6666667	(ft)	total base
	150	(pcf)	concrete unit weight
EXTERNAL LOADS			
$\mathrm{P}_{\text {applied }}$	0	(lb/ft)	
$\mathrm{V}_{\text {applied }}$	187.5	(lb/ft)	0.5
$\mathrm{M}_{\text {applied }}$	0	(lb-ft / ft)	
Surcharge	36	(psf)	

LOAD CALCULATION

FACTORED (1.7) FOOTING LOADS

7) FOOTING LOADS		
5.5	(kip-ft)	Mu @ Toe (Bot Reinf)
0.0	(kip-ft)	Mu @ Heel (Top Reinf)
4.22	(kip)	Vu @ Toe
0.00	(kip)	Vu @ Heel

Footing			$\frac{\text { Wall }}{\square \mathrm{Vc}}$		
$\emptyset \mathrm{Vc}$	7,969	10" thick	$\emptyset \mathrm{Vc}$	5,692	8" thick
As	0.2	\#4 @ 12"	As	0.15	\#4 @ 16"
a	0.0003		a	0.0002	
$\varnothing \mathrm{Mn}$	6.30	k-ft	$\varnothing \mathrm{Mn}$	4.05	k-ft
	0.6	3-\#4			
	0.001875	Reinf. Ratio			
LRFD soil		psf @	-0.07 ft from Wall		
	1358.3	psf @ Toe			
	4217.5215	\# in Toe @	1.31 ft from Wall		

CANTILEVER RETAINING WALL EXTERNAL STABILITY

limitations:	uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)						
reference:	Nilson \& Winter, Design of Concrete Structures, 11th Edition, page 680						
file author:	S. Frech	last modified:	4/25/2002				
SOIL DATA							
w phi del	130	(pcf) (deg) (deg)	soil unit weight soil internal angle of friction surface angle incline	Coeff. Friction			
	35			Unit Weight	Int Friction	w. Conc	Soil
	0			110-120	33-40	0.5-0.6	Sand or gravel, no fines
	0.5		coeff. friction w/Concrete	120-130	25-35	0.4-0.5	Sand or gravel, w/f fines
	0.819		cosine(phi)	110-120	23-30	0.3-0.4	Silty sand, high clay
	1.000		cosine(del)	100-120	25-35	0.2-0.4	Medium or stiff clay
Ca	0.271	35.23 psf	coeff. of active pressure	90-110	20-25	0.2-0.3	Soft clay, silt

WALL GEOMETRY			
H1	5.3333333	(ft)	soil retained
H2	0.1666667	(ft)	soil depth above toe
H3	0.8333333	(ft)	footing thickness
H4	1	(ft)	passive pressure soil depth
B1	0.6666667	(ft)	wall width
B2	3.25	(ft)	toe width
B3	0	(ft)	heel width
H	6.3333333	(ft)	total height
B	3.9166667	(ft)	total base
	150	(pcf)	concrete unit weight
EXTERNAL LOADS			
$\mathrm{P}_{\text {applied }}$	100	(lb/ft)	
$\mathrm{V}_{\text {applied }}$	450	(lb/ft)	1
$M_{\text {applied }}$	0	(lb-ft / ft)	
Surcharge	44	(psf)	

LOAD CALCULATIONS

STABILITY FACTOR OF SAFETY CHECKS

FACTORED (1.7) FOOTING LOADS

7) FOOTING LOADS		
3.9	(kip-ft)	Mu @ Toe (Bot Reinf)
0.0	(kip-ft)	Mu @ Heel (Top Reinf)
1.97	(kip)	Vu @ Toe
0.00	(kip)	Vu @ Heel

Footing			Wall		
ØVc	7,969	10" thick	$\bar{\emptyset} \mathrm{c}$	5,692	8" thick
As	0.2	\#4 @ 12"	As	0.24	\#4 @ 10"
a	0.0003		a	0.0004	
$\emptyset \mathrm{Mn}$	6.30	k-ft	$\emptyset \mathrm{Mn}$	6.48	k-ft
	1	5-\#4			

LRFD soil $\quad 207.97872$ psf @ Wall interface 1006.4 'psf @ Toe

1297.4346	\# in Toe @	2.166666667 ft from Wall
675.93085	\# in Toe @	1.625 ft from Wall

CANTILEVER RETAINING WALL EXTERNAL STABILITY

limitations:	uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)						
reference:	Nilson \& Winter, Design of Concrete Structures, 11th Edition, page 680						
file author:	S. Frech	last modified:	4/25/2002				
SOIL DATA							
whi del	130	(pcf) (deg) (deg)	soil unit weight soil internal angle of friction surface angle incline	Coeff. Friction			
	35			Unit Weight	Int Friction	w. Conc	Soil
	0			110-120	33-40	0.5-0.6	Sand or gravel, no fines
	0.5		coeff. friction w/Concrete	120-130	25-35	0.4-0.5	Sand or gravel, w/ fines
	0.819		cosine(phi)	110-120	23-30	0.3-0.4	Silty sand, high clay
	1.000		cosine(del)	100-120	25-35	0.2-0.4	Medium or stiff clay
Ca	0.271	35.23 psf	coeff. of active pressure	90-110	20-25	0.2-0.3	Soft clay, silt
Cp	2.307						

WALL GEOMETRY			
H1	6.3333333	(ft)	soil retained
H2	0.1666667	(ft)	soil depth above toe
H3	0.8333333	(ft)	footing thickness
H4	1	(ft)	passive pressure soil depth
B1	0.6666667	(ft)	wall width
B2	4.25	(ft)	toe width
B3	0	(ft)	heel width
H	7.3333333	(ft)	total height
B	4.9166667	(ft)	total base
	150	(pcf)	concrete unit weight
EXTERNAL LOADS			
$\mathrm{P}_{\text {applied }}$	150	(lb/ft)	
$\mathrm{V}_{\text {applied }}$	787.5	(lb/ft)	1.5
$\mathrm{M}_{\text {applied }}$	0	(lb-ft / ft)	
Surcharge	52	(psf)	

LOAD CALCULATION

STABILITY FACTOR OF SAFETY CHECKS

FACTORED (1.7) FOOTING LOADS

FOOTING LOADS		
6.1	(kip-ft)	Mu @ Toe (Bot Reinf)
0.0	(kip-ft)	Mu @ Heel (Top Reinf)
2.43	(kip)	Vu @ Toe
0.00	(kip)	Vu @ Heel

Footing			Wall		
ØVc	7,969	10" thick	$\bar{\varnothing} \mathrm{c}$	5,692	8" thick
As	0.2325	\#5 @ 16"	As	0.372	\#5 @ 10"
a	0.0003		a	0.0005	
$\emptyset \mathrm{Mn}$	7.32	k-ft	$\emptyset \mathrm{Mn}$	10.04	k-ft
	1.55	5-\#5			

LRFD soil 252.81017 psf @ Wall interface 889.1 'psf @ Toe

1352.1159	\# in Toe @	2.833333333 ft from Wall
1074.4432	\# in Toe @	2.125 ft from Wall

CANTILEVER RETAINING WALL EXTERNAL STABILITY

limitations:	uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)						
reference:	Nilson \& Winter, Design of Concrete Structures, 11th Edition, page 680						
file author:	S. Frech	last modified:	4/25/2002				
SOIL DATA							
w	130	(pcf)	soil unit weight			oeff. Frictio	
phi	35	(deg)	soil internal angle of friction	Unit Weight	Int Friction	w. Conc	Soil
del	0	(deg)	surface angle incline	110-120	33-40	0.5-0.6	Sand or gravel, no fines
	0.5		coeff. friction w/Concrete	120-130	25-35	0.4-0.5	Sand or gravel, w/fines
	0.819		cosine(phi)	110-120	23-30	0.3-0.4	Silty sand, high clay
	1.000		cosine(del)	100-120	25-35	0.2-0.4	Medium or stiff clay
Ca	0.271	35.23 psf	coeff. of active pressure	90-110	20-25	0.2-0.3	Soft clay, silt
Cp	2.307	299.91 psf	coeff. of passive pressure				

WALL GEOMETRY			
H1	7.3333333	(ft)	soil retained
H2	0.1666667	(ft)	soil depth above toe
H3	0.8333333	(ft)	footing thickness
H4	1	(ft)	passive pressure soil depth
B1	0.6666667	(ft)	wall width
B2	5.5	(ft)	toe width
B3	0	(ft)	heel width
H	8.3333333	(ft)	total height
B	6.1666667	(ft)	total base
	150	(pcf)	concrete unit weight
EXTERNAL LOADS			
$\mathrm{P}_{\text {applied }}$	150	(lb/ft)	
$\mathrm{V}_{\text {applied }}$	787.5	($\mathrm{lb} / \mathrm{ft}$)	1.5
$\mathrm{M}_{\text {applied }}$	0	($\mathrm{lb}-\mathrm{ft} / \mathrm{ft}$)	
Surcharge	60	(psf)	

LOAD CALCULATION
STABILITY FACTOR OF SAFETY CHECKS

component	weight (\#)	arm (ft)	moment (\#-ft)
w1 (concrete)	750	5.83	4375
w2 (concrete)	771	3.08	2377
w3 (heel soil)	0	6.17	0
w4 (surcharge)	0	6.17	0
w5 (toe soil)	119	2.75	328
P applied	150	0.33	50
vert. force	1,790	moment	7,129
lateral sliding resistance			
	150	(lb)	passive pressure sliding resistance
	895	(lb)	soil friction force
	1045	(lb)	total sliding resistance

	1.5		F.S. overturning
	1.5		F.S. sliding
overturning	2.24	OK	Mr/ Mo
sliding	1.83	OK	(PP+F)/(Ph+V)
SOIL BEARING			
a	2.21	(ft)	distance to resultant
	2.06 ' to 4.11'		middle third of footing
q1	537	(psf)	bearing pressure @ toe
q2	44	(psf)	bearing pressure @ heel
FACTORED (1.7) STEM LOAD FORCES			
	7.5	(ft)	$\mathrm{H} 1+\mathrm{H} 2$
	2.64	(ft)	line of action (above base)
	1112	(lbs)	P (arm only)
	1112	(lbs)	Ph (arm only)
	15.0	(kip-ft)	Mu (arm moment)

FACTORED (1.7) FOOTING LOADS

FOOTING LOADS		
10.0	(kip-ft)	Mu @ Toe (Bot Reinf)
0.0	(kip-ft)	Mu @ Heel (Top Reinf)
2.97	(kip)	Vu @ Toe
0.00	(kip)	Vu @ Heel

$\frac{\text { Footing }}{\varnothing \mathrm{Vc}}$	7,969	10" thick		$\frac{\text { Wall }}{\varnothing \mathrm{Vc}}$	5,692	8" thick
As	0.372	\#5 @ 10"		As	0.465	\#5 @ 8"
a	0.0005			a	0.0007	
$\emptyset \mathrm{Mn}$	11.72	k-ft		$\emptyset \mathrm{Mn}$	12.55	k-ft
	1.55	5-\#5				
	0.0020946	Reinf. Ratio				
LRFD soil	165.40541	psf @ Wall in				
	912.9	psf @ Toe				
	2055.6101	\# in Toe @		ft from		
	909.72973	\# in Toe @		ft from		

CANTILEVER RETAINING WALL EXTERNAL STABILITY

limitations:	uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)						
reference:	Nilson \& Winter, Design of Concrete Structures, 11th Edition, page 680						
file author:	S. Frech	last modified:	4/25/2002				
SOIL DATA							
w phi del	130	(pcf) (deg) (deg)	soil unit weight soil internal angle of friction surface angle incline	Coeff. Friction			
	35			Unit Weight	Int Friction	w. Conc	Soil
	0			110-120	33-40	0.5-0.6	Sand or gravel, no fines
	0.5		coeff. friction w/Concrete	120-130	25-35	0.4-0.5	Sand or gravel, w/f fines
	0.819		cosine(phi)	110-120	23-30	0.3-0.4	Silty sand, high clay
	1.000		cosine(del)	100-120	25-35	0.2-0.4	Medium or stiff clay
Ca	0.271	35.23 psf	coeff. of active pressure	90-110	20-25	0.2-0.3	Soft clay, silt

WALL GEOMETRY			
H1	8.3333333	(ft)	soil retained
H2	0.1666667	(ft)	soil depth above toe
H3	0.8333333	(ft)	footing thickness
H4	1	(ft)	passive pressure soil depth
B1	0.6666667	(ft)	wall width
B2	6.5	(ft)	toe width
B3	0	(ft)	heel width
H	9.3333333	(ft)	total height
B	7.1666667	(ft)	total base
	150	(pcf)	concrete unit weight
EXTERNAL LOADS			
$\mathrm{P}_{\text {applied }}$	200	(lb/ft)	
$\mathrm{V}_{\text {applied }}$	1200	($\mathrm{lb} / \mathrm{ft}$)	2
$\mathrm{M}_{\text {applied }}$	0	($\mathrm{lb}-\mathrm{ft} / \mathrm{ft}$)	
Surcharge	68	(psf)	

LOAD CALCULATIONS

| lateral soil force and overturning moment |
| :--- | :--- | :--- | :--- | :--- |

STABILITY FACTOR OF SAFETY CHECKS

	1.5		F.S. overturning
	1.5		F.S. sliding
overturning	2.40	OK	Mr/ Mo
sliding	2.36	OK	(PP+F) $/(\mathrm{Ph}+\mathrm{V}$)
SOIL BEARING			
a	2.67	(ft)	distance to resultant
	2.39^{\prime} to 4.78'		middle third of footing
q1	514	(psf)	bearing pressure @ toe
q2	69	(psf)	bearing pressure @ heel
FACTORED (1.7) STEM LOAD FORCES			
	8.5	(ft)	$\mathrm{H} 1+\mathrm{H} 2$
	2.99	(ft)	line of action (above base)
	1428	(lbs)	P (arm only)
	1428	(lbs)	Ph (arm only)
	24.6	(kip-ft)	Mu (arm moment)

FACTORED (1.7) FOOTING LOADS

FOOTING LOADS		
13.6	(kip-ft)	Mu @ Toe (Bot Reinf)
0.0	(kip-ft)	Mu @ Heel (Top Reinf)
3.45	(kip)	Vu @ Toe
0.00	(kip)	Vu @ Heel

$\frac{\text { Footing }}{\emptyset \mathrm{Vc}}$				$\underline{\text { Wall }}$		
$\emptyset \mathrm{Vc}$	7,969	10" thick		$\emptyset \mathrm{Vc}$	5,692	8" thick
As	0.465	\#5 @ 8"		As	0.62	\#5 @ 6"
a	0.0007			a	0.0009	
$\emptyset \mathrm{Mn}$	14.65	k-ft		$\emptyset \mathrm{Mn}$	16.74	k-ft
	1.55	5-\#5				
	0.0018023	Reinf. Ratio				
LRFD soil	$\begin{aligned} & 187.67209 \text { psf @ Wall interface } \\ & 873.8 \text { 'psf @ Toe } \end{aligned}$					
	2229.9157	\# in Toe @	4.333333333 ft from Wall			
	1219.8686	\# in Toe @	3.25 ft from Wall			

Tread beam has a reaction of 360\# at each side...use SDS screws and dapped angle as shown to connect tread to stringer. At base of stringer, use an embed plate to create separation at ground and use slotted holes to allow stringer to move in earthquake. Need a 1686\# capacity hanger from stringer to cross beam,

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1687 @ 9' 9"	$10725\left(3.00^{\prime \prime}\right)$	Passed (16\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1305 @ 1^{\prime} 35 / 8^{\prime \prime}$	11660	Passed (11\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	3868 @ $5^{\prime} 1 / 2^{\prime \prime}$	26400	Passed (15\%)	1.00	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
Live Load Defl. (in)	$0.054 @ 5^{\prime} 1 / 2^{\prime \prime}$	0.558	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.061 @ 5^{\prime} 1 / 2^{\prime \prime}$	0.744	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=11^{\prime} 115 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Beveled Plate - DF	5.50 "	5.50"	$1.50{ }^{\prime \prime}$	205	1555	389	2149	Blocking
2-Beam - GLB	3.00 "	3.00 "	1.50 "	196	1490	373	2059	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 8 \mathrm{8} \circ \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 8$ " o/c	

\bullet-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $9^{\prime} 101 / 2^{\prime \prime}$	N / A	16.0	--	--	
1 - Uniform (PSF)	0 to $9^{\prime} 101 / 2^{\prime \prime}$	$3^{\prime} 1^{\prime \prime}$	5.9	100.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Job Notes
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233

Rockery wall will be used up to a maximum $4^{\prime}-0$ " tall. Wall will have a 35 psf active soil pressure and 8 h seismic surcharge pressure as shown below. Use a friction coefficient of 0.5 and negate passive earth pressure.
Wall FBD looks as shown below. Worst case condition is active soil pressure and seismic surcharge with a factor of safety of 1.2 for sliding and overturning. Based on the geometry and loading condition shown below, a gravity force of $980 \#$ per foot would be required at 10 from the inside corner to provide a FOS of 1.2 for overturning and sliding. Use a rock weight of 125 pcf and an interior friction factor of 0.55 .
Rockery wall should use a minimum width of 2'-0"; be embedded 1' into dirt;

[^0]: 1. Allowable shear loads are applicable to installations on concrete with specifed compressive strengths as listed using the ASD basic (IBC Section 1605.3.1) or the alternative basic (IBC Section 1605.3.2) load combinations.
 2. Load values include evaluation of bearing stresses on concrete foundations and do not require further evaluation by the designer. For installations on masonry foundations, bearing capacity shall be evaluated by the designer.
 3. Seismic design based on 2018 IBC using $R=6.5$. For other codes, use the seismic coeffcients corresponding to light-frame bearing walls with wood structural panels or sheet-steel panels.
 4. Allowable vertical load denotes the total maximum concentric vertical load permitted on the panel acting in combination with the allowable shear loads.
 5. Allowable shear, drift and anchor tension values may be interpolated for intermediate height or vertical loads. For panels $741 / 2 "-78^{\prime \prime}$ tall, use the values for a 78"-tall panel.
 6. To achieve required WSWH panel evaluation height, trim next tallest fullheight panel defined in table on p. 13.
 7. Drifts at lower design shear may be linearly reduced.
 8. See p. 16 for allowable out-of-plane and axial capacities.
[^1]: *The Design Summary assumes that the shear wall is designed as blocked.

[^2]: *The Design Summary assumes that the shear wall is designed as blocked.

