STRUCTURAL CALCULATIONS

Mithalia Residence 3632 90th Ave SE Mercer Island, WA - 98040

Javid Abdi, PE, SE 6810 NE 149th St. Kenmore, WA – 98028 <u>Atlas.CSE@gmail.com</u> 206-427-7233

Project:	Mithalia Residence	By:	JDA
Proj No:	210-2022	Date: 10,	/17/2022

Summary

The project consists of a new single-family residence located in Mercer Island. The existing lot consists of a moderate sloping site at the east, from elevation 224' to 258', while the remaining portion of the lot remains relatively flat at an average of 266'.

The new three-story residential structure will be set into the sloped site at the west and daylight at the east. Based on the Geotechnical Evaluation Report authored by American Geoservices, the following foundation design considerations will be used: (1) Conventional shallow foundations with a maximum allowable bearing capacity of 2,000 psf with all footings being placed at least 3 feet below existing grades, (2) Passive earth pressure of 300 pcf and unfactored coefficient of friction value of 0.4, (3) Continuous foundation walls reinforced in the top and bottom to span an unsupported length of 8 feet to further aide in resisting differential movement, (4) Braced foundation wallsdesigned to resist an equivalent fluid density of 65 pcf. East of the setback line, foundations for the retaining wall, recessed patio area, and posts for the main floor deck will be founded on pin-pile supported grade beams.

The residence will be comprised of the following: reinforced concrete strip and spread footings; concrete slab-on-grade lower floor; wood framed connector plat truss main and upper floors supported on interior and exterior wood framed load bearing walls, beams, and posts at each level; and connector plate wood trusses framing the flat roof. The lateral systems will consist of wood sheathed diaphragms and shear walls (tongue & groove plywood floor/roof/wall sheathing), and Simpson StrongTie holdowns.

See pages 2-3 for lateral design. Site seismic variables are shown on page 4; seismic areas and shearwall lengths are shown on pages 5-9; wall and wind areas on pages 10; and wind load derivation is shown on pages 11 - 17 (Kzt of 1.6 used based on Mercer Island map). Seismic and wind loads were determined using ASCE 7-16 procedures. As shown on pages 2-3, shearwalls with 10d nails spaced at 6" o.c. (SW-6), 4" o.c. (SW-4), 3" o.c. (SW-3), 2" o.c. (SW-2), 4" o.c. at each side (SW-4), 3" o.c. at each side (SW-33), and 2" o.c. at each side (SW-22) of wall are required. Shearwalls have been detailed to meet the ASD shearwall capacity values as listed in plans. LTP4 and A34 clips have an ASD capacity of 540# and 550# per clip; SDS screws have an ASD capacity of 400# per screws; 5/8" and 3/4" diameter anchor bolts have an ASD capacity of 1485# and 2039# with Doug Fir plates. The required spacing of these connectors is shown in the shearwall table in the plans. Each shearwall will have a different uplift demand, as shown on pages 2 - 3. Simpson holdowns will be used as shown in the plans, sized to ensure ASD uplift capacity. Anchorage of the HDU's into concrete were designed for worst case LRFD load when including the seismic overstrength factor. To preclude breakout, additional reinforcing hairpins are detailed to transfer shear force into new foundation walls. Note that transfer shearwalls (i.e. non-stacking shearwalls that occur atop framing) occur. Per ASCE 7, the supporting members have been designed to consider holdown forces with the 2.5 overstrength factor to ensure sufficient strength is provided...serviceability (i.e. deflection) does not consider overstrength. Strapped shearwalls were used to minimize holdowns and holdown demand where applicable...note that sheathing above and below opening is not considered when sizing shearwalls, only to distribute load across openings and determine strap forces. See pages 18 - 21 for force transfer around opening calculations. Diaphragm will use 3/4" T&G sheathing with 10d @ 6" oc at panel edges.

Gravity system was designed for 25 psf roof snow + 5 psf rain load, 15 psf roof dead load + 10 psf PV roof dead load, 40 psf floor live load, 60 psf roof deck load, and 25 psf floor dead load. See pages 22-24 for framing key; and pages 25 - 90 for member designs. Uplift for each member considering 0.6D+0.6W will be resisted by straps, holdowns, or post caps at headers/beams; and H2.5a hurricane ties at rafters and trusses.

Design footings for a 2000 psf bearing pressure, and walls for 65 pcf/50 pcf (restrained/unrestrained) lateral earth pressure. Provide minimum reinforcing in footings and walls per ACI. See pages 91 - 97 for design of grade beams, pages 98 - 103 for design of foundation walls and foundation wall bracing; and pages 104 - 105 for design of retaining walls

Subject: Calculation Overview Project: Mithalia Residence Client: CenterLine

Project:		3632 90th	Ave SE (Mithalia)									By:	JDA
Proj No:		210-2022										Date:	10/17/2022
R Ω₀	6.5 2.5		ASCE 7-16 Table 12.2-1										
C _d V C _s	4 50.9 0.173	Kips	= CsW ~ ASCE 7-16 (12.8-1)										
	0.173 0.329 - 0.049 0.01		= Sds / (R/le) ~ ASCE 7-16 (12.8-2) < Sd1 / T(R/le) ~ if T <tl, (12.8-3)<br="" 7-16="" asce="">< Sd1TL / T2(R/le) ~ if T>TL, ASCE 7-16 (12.8 >0.044Sdsle ~ ASCE 7-16 (12.8-5) >0.01 ~ ASCE 7-16 (12.8-5)</tl,>	k3)									
W I _e F _v F _a S _c	- 295 1 1.812 1.2 1.403	Kips	>0.551 / (R/le) ~ if S1>0.8g, ASCE 7-16 (12.8 ATC Hazard Table 11.4-2 and Section 11.4.8 Exception ATC Hazard	e) EXCEPTION: A ground motion hazard analysis is not required for structures other than seismically isolated structures		Table 11 Mapped File	4-2 Long-	Period Si	te Coeffic	ient, F _v quake (MCI 1-5 Period	In) Spectral		
$S_{1} \\ S_{mS} \\ S_{m1} \\ S_{ds} \\ S_{d1} \\ S_{DC} \\ T_{a}$	0.488 1.684 0.884256 1.122 0.589504 D 0.275	g g g g g g seconds	ATC Hazard ATC Hazard = F,S ₁ ~ ASCE 7-16 (11.4-1) <u>ATC Hazard</u> = 2/3 S _{m1} ~ ASCE 7-16 (11.4-4) = Cthrx - ASCE 7-16 (12.8-7)	and structures with damping systems write: 1. Structures on Site Class E last with S ₂ greater than or equal to 1.0, provided the site coefficient F ₂ is taken as equal to that of Site Class C. 2. Structures on Site Class E last with S ₁ greater than or equal to 2 ₂ provided the value of the seismic response coefficiency of the structure of the seismic response coefficiency of the structure of the seismic response coefficiency of the structure of the seismic structure compared in accordance with either Eq. (12.5) for T ₁ ≥ T > 1.5T ₁ or Eq. (12.54-1) for T > T ₁ .	A B C D E F	8, ≤ 0.1 0.8 0.8 1.5 2.4 4.2 Scc Scction 11.4.8	8, -0.2 0.8 0.8 1.5 2.2' See Section 11.4.8 Sec Section 11.4.8	8, -03 0.8 0.8 1.5 2.0' See Section 11.4.8 Sec Section 11.4.8	8, -0.4 0.8 0.8 1.5 1.9" See Section 11.4.8 Sec Section 11.4.5	8, -4.5 0.8 0.8 1.5 1.8' See Section 11.4.8 See Section 11.4.8	\$1 ≥ 0.8 0.8 0.8 1.4 1.7' See Section 11.4.8 See Section 11.4.8		
C _t h _n x T _L T _S 1.5T _S	0.02 33.00 0.75 6 0.525 0.788	feet seconds seconds seconds	ASCE 7-16 Table 12.8-2 ASCE 7-16 Table 12.8-2 <u>UISGS Selemic Values</u> = S _{et} /S _{tab} , ASCE 7-16 (11.4-3)	to 0.2, provided that <i>T</i> is less than or equal to <i>T</i> , and the equivalent static force procedure is used for design.	Note: U	be straight fin	e interpolari its for site s	ion far inte precific gro	mediate v	dues of S s in Secti	on 11.4.8.		

Story	Weight	Height	Wh	C_{vx}	F xE, Kips	$\sum F_{xE}$, Kips	F xE, Kips	$\sum F_{xE}$, Kips	F _{xW} , Kips	F _{xW} , Kips
Siory	(Kips)	(ft)	(Kip-ft) (₩b/Σ₩b) (C,		$(C_m V)$	LRFD	$(C_m V)$	ASD	East ASD	North ASD
Roof	78.22	33.00	2,581	0.44	22.3	22.3	15.580	15.580	3.396	4.397
Upper	91.04	22.00	2,003	0.34	17.3	39.5	12.089	27.670	6.621	8.795
Main	125.64	10.50	1,319	0.22	11.4	50.9	7.963	35.633	6.344	7.907
$\sum W$	294.90									
								L	EFT-to-RIGHT	RUNNING WAL
										An Deef

								<u> </u>	EFT-to-RIGHT	RUNNING WA	LLS								
				05:014	2		14/01/5		Upper -	to- Root		(16							
				SEISMI	C		WIND			GRA	VITY LOADING	(plf)							
	%	Length (ft)	# in wall	PLF	Chord F (#)	# in wall	PLF	Chord F (#)	wall w (#)	Snow	Dead	Live	Uplift	Comp			~		
N	50.0%	23.04	7,790	070	0.455	1,698	50	505	0.055	0	0	0	1 007			9	π ΟΥ	NOTOIO	014
		24.58	6,706	273	2,455	1,461	59	535	2,655	0	0	0	1,867	4,119		3	OK	MS1C40	OK
	36.5%	8.42	2,846	338		620										3	OK		
	30.4%	7.00	2,367	338		516										3	OK		
	19.2%	4.42	1,493	338		325				-	_	-				3	OK		
	13.9%	3.21	1,085	338	3,043	236	74	663	347	0	0	0	2,966	3,260		4	OK	MSTC52	OK
	50.00/		7 700			4 000											~		
s	50.0%	8.88	7,790	070	7 000	1,698	101									9	ft Orr		01/
	100.0%	8.88	7,790	8/8	7,900	1,698	191	1,722	959	0	0	0	7,688	8,501		44	OK	HDU8	OK
									Main A										
				CEICMI	r.		WIND		Walti -U	o- opper		(16)							
	e/	Longth (ft)	# in Wall	DIE	Chord E (#)	# in Wall	DIE	Chord E (#)	Moll M (#)	Show Sha	Dood	(pii)	Unlift	Comp	Anchorago				
N	20 00/	22 75	10 477	FLF	Choru F (#)	4 965	FLF	Choru F (#)	vvali vv (#)	3110W	Deau	LIVE	Opint	Comp	Anchorage	10	4		
1120	81 /1%	23.75	10 157	425	4 247	4,205	178	1 783	2 870	0	0	0	3 6 1 1	6.046	1/ 108	3	ŐK	MSTC66	OK
1129	24.6%	5.92	3 065	420	4,247	4,203	190	1,703	2,070	0	0	0	3,011	0,040	14,190	3	OK	W31000	UK
	24.070	3.83	3,003	525		699	180									3	OK		
	16 1%	3.83	2,014	525		699	180									3	OK		
	24.6%	5.83	2,014	525		1.048	180									3	OK		
	18.6%	4.42	2 320	525	5 254	703	180	1 706	530	0	0	0	8 102	5 586	18 584	3	OK	HDU111	OK
	10.070	4.42	2,520	525	0,204	155	100	1,730	550	0	0	0	0,102	3,300	10,004	5	OIC	HEOTI	OR
м	43 7%	26.42	5 281			2 802										10	#		
1272	25.2%	6.67	1 3 3 3	200	1 000	730	100	1.005	800	0	0	0	1 822	2 501	6 860	6	ŐK	MSTC40	OK
1212	47.3%	12.50	2 / 00	200	1,000	1 360	109	1,035	1 500	0	0	0	1,622	2,001	6,633	6	OK	MSTC40	OK
	9.5%	2.50	500	200	1,000	274	109	1,035	300	0	0	0	1,007	2,333	7.039	6	OK	MSTC40	OK
	18.0%	4.75	950	200	1,000	520	109	1,035	570	0	0	0	1,833	2,107	6.947	6	OK	MSTC40	OK
	10.070	4.75	350	200	1,355	520	103	1,000	510	0	0	0	1,075	2,330	0,347	0	OIC	101040	OR
9	17 5%	26.75	0.012			2 860										10	ft		
511	100.0%	37.92	0.012	261	2 614	2,000	75	754	4 550	0	0	0	1 606	5 466	7 700	3	OK .	MSTC40	OK
011	12.8%	3.42	1 266	371	2,014	365	107	134	4,000	0	0	0	1,000	3,400	1,133	3	OK	1101040	on
	23.1%	6.17	2 285	371		659	107									ä	OK		
	14.6%	3.92	1 4 5 1	371		419	107									3	OK		
	49.5%	13.25	4 910	371		1 417	107									ä	OK		
	40.070	10.20	4,010	011			101									, in the second se	U.I.		
									Lower	-to- Main									
				SEISMI	С		WIND			GRA	VITY LOADING	(plf)							
	%	Length (ft)	# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp	Anchorage				
N	50.0%	31.17	16,459			7,437										10	ft		
1165	63.6%	19.83	10,474	528	5,281	4,733	239	2,386	2,380	0	0	0	4,754	6,773	18,056	3	OK	HDU5	OK
	14.2%	4.42	2,332	528	5,281	1,054	239	2,386	530	0	0	0	5,164	5,613	18,681	3	OK	HDU5	OK
	22.2%	6.92	2,324	336	3,361	1,050	152	1,518	830	0	0	0	3,177	3,881	11,722	4	OK	HDU4	OK
M	50.0%	48.25	9,262			6,064										10	ft		
1333	13.8%	6.67	1,280	192	1,920	838	126	1,257	800	0	0	0	1,742	2,421	6,586	6	OK	HDU2	OK
	33.5%	16.17	3,103	192	1,920	2,032	126	1,257	1,940	0	0	0	1,490	3,136	6,201	6	OK	HDU2	OK
1	5.2%	2.50	480	192	1,920	314	126	1,257	300	0	0	0	1,853	2,108	6,755	6	OK	HDU2	OK
1	16.9%	8.17	1,568	192	1,920	1,026	126	1,257	980	0	0	0	1,703	2,534	6,525	6	OK	HDU2	OK
	26.4%	12.75	2,448	192	1,920	1,602	126	1,257	1,530	0	0	0	1,581	2,879	6,339	6	OK	HDU2	OK
1	4.1%	2.00	384	192	1,920	251	126	1,257	240	0	0	0	1,866	2,070	6,775	6	OK	HDU2	OK
1																			
S	50.0%	25.17	13,893			3,537										10	ft		
614	40.1%	10.08	5,566	552	5,520	1,417	141	1,406	1,210	0	0	0	5,252	6,279	19,307	3	OK	HDU5	OK
1	26.8%	6.75	3,726	552	5,520	949	141	1,406	810	0	0	0	5,341	6,028	19,442	3	OK	HDU5	OK
1	16.6%	4.17	2,300	552	5,520	586	141	1,406	500	0	0	0	5,410	5,834	19,547	3	OK	HDU5	OK
1	16.6%	4.17	2,300	552	5,520	586	141	1,406	500	0	0	0	5,410	5,834	19,547	3	OK	HDU5	OK
1															.,				

								l l	UP-to-DOWN R	UNNING WAL	LS								
	Upper - to- Roof																		
				SEISM	С		WIND			GRA	VITY LOADING	6 (plf)							
	%	Length (ft)	# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp					
W	50.0%	15.08	7,790	516		2,199	146									9	ft		
		17.08	7,790	456	4,104	2,199	129	1,158	1,845	0	0	0	3,696	5,261		3	OK	HDU4	OK
	49.2%	7.42	3,831	516		1,081	146									3	OK		
	50.8%	7.67	3,960	516		1,118	146									3	OK		
E	50.0%	7.08	7,790	1,100		2,199	310									9	ft		
	100.0%	7.08	7,790	1,100	9,898	2,199	310	2,794	765	0	0	0	9,729	10,378		33	OK	HDU11	OK
Main -0- Upper																			
				SEISMI			WIND	01		GRA	VITY LOADING	i (plf)							
	%	Length (ft)	# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp	Anchorage		~		
vv	22.5%	13.92	10,509	765	7.554	4,177	200	0.004	000	0	0	0	7.470	7 777		10	n OK	110110	OK
723	21.0%	3.00	2,205	755	7,551	900	300	3,001	360	0	0	0	7,472	7,777		44	OK	HDU8	OK
	21.0%	3.00	2,205	755	7,551	900	300	3,001	360	0	0	0	7,472	7,777		44	OK	HDU8	OK
	26.9%	3.75	2,832	/55	7,551	1,125	300	3,001	450	0	0	0	7,452	7,833		44	OK	HDU8	OK
	29.9%	4.17	3,140	/55	7,551	1,250	300	3,001	500	U	0	0	7,441	7,005		44	UK	HDU6	UK
M1	20.0%	23.08	4 601			2 240										10	#		
1221	100.0%	23.00	4,591	100	1 090	4 177	101	1 800	2 770	0	0	0	1 276	2 705		10	OK	METCAD	OK
1221	100.0 %	23.00	4,591	199	1,909	4,177	101	1,009	2,770	U	0	0	1,370	3,725		4	UK	10131040	UK
MO	10.9%	2.25	2 202			1 740										10	4		
636	100.0%	3.25	2,302	736	7 350	1,740	535	5 353	300	0	0	0	7 272	7 603		10	OK	HDU11	OK
000	100.070	5.25	2,552	750	1,555	1,740	555	3,335	330	0	0	0	1,212	7,005		44	OR	nborn	OIC
F	19.8%	7 25	10 178	1 404		3 936	543									10	ff		
635	100.0%	7.25	10 178	1 404	14.039	3,936	543	5 4 2 9	870	0	0	0	13.846	14 584		22	OK .	HDU14	OK
				.,	,	-,		-,		-	-	-		,					
									Lower	-to- Main									
				SEISMI	с		WIND			GRA	VITY LOADING	6 (plf)							
	%	Length (ft)	# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp	Anchorage				
W	16.2%	40.00	11,796			5,454										10	ft		
503	60.0%	24.00	7,077	295	2,949	3,272	136	1,364	2,880	0	0	0	2,311	4,754		2	OK	HDU2	OK
	66.7%	16.00	7,864	491	4,915	3,636	227	2,273	1,920	0	0	0	4,490	6,118		2	OK	HDU4	OK
M1	22.9%	18.08	6,418			5,154										10	ft		
714	62.2%	11.25	3,993	355	3,549	3,206	285	2,850	1,350	0	0	0	3,250	4,395		4	OK	HDU4	OK
	37.8%	6.83	2,425	355	3,549	1,947	285	2,850	820	0	0	0	3,367	4,063		4	OK	HDU4	OK
M2	27.7%	12.25	4,599	375		3,932	321									10	ft		
863	68.7%	8.42	3,160	375	3,754	2,701	321	3,210	1,010	0	0	0	3,531	4,387		4	OK	HDU4	OK
	31.3%	3.83	1,439	375	3,754	1,230	321	3,210	460	0	0	0	3,652	4,043		4	OK	HDU4	OK
-	22.001	40.00	40.000			0.550										40			
E	33.2%	19.33	12,820	000	0.004	6,559	000	2 202	4 070	0	0	0	0.050	7 407		10	π	110110	01
1033	54.7%	10.58	7,018	663	0,031	3,591	339	3,393	1,270	0	0	0	0,350	7,427		2	OK	HDU8	OK
	34.9%	0./5	4,476	663	0,031	2,290	339	3,393	810	0	0	0	0,452	7,139		2	OK	HDU8	OK
	10.3%	∠.00	1,326	663	6,631	ъ/9	339	3,393	240	Û	0	0	6,578	6,782		2	UK	HDU8	UK

ATC Hazards by Location

D-default

Search Information

		9	TOCH OF	SE 26th or	
Address:	3632 90th Ave SE, Mercer Island, WA 98040, USA	263 ft	SE 36th St	Country Village	Mercer.
Coordinates:	47.5772184, -122.2181489	° A		Day School 🗸 👫	
Elevation:	263 ft			Bright Horizons	
Timestamp:	2022-07-16T15:08:57.346Z		by III	at Mercer Island	Frencr School of Pu
Hazard Type:	Seismic	jury			Stroum
Reference Document:	ASCE7-16	iteGoogle	G	Map data ©2022	Report a map error
Risk Category:	II				

Va

Basic Parameters

Site Class:

Name	Value	Description
SS	1.403	MCE _R ground motion (period=0.2s)
S ₁	0.488	MCE _R ground motion (period=1.0s)
S _{MS}	1.684	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.122	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
F_v	* null	Site amplification factor at 1.0s
CRS	0.903	Coefficient of risk (0.2s)
CR ₁	0.897	Coefficient of risk (1.0s)
PGA	0.6	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.72	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	1.403	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.554	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.533	Factored deterministic acceleration value (0.2s)
S1RT	0.488	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.544	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.42	Factored deterministic acceleration value (1.0s)
PGAd	1.208	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

6810 NE 149th St Kenmore, WA 206-427-7233 JOB TITLE 3632 90th Ave SE (Mithalia)

ЈОВ NO . 210-2022	SHEET NO.	
CALCULATED BY JDA	DATE	7/16/22
CHECKED BY	DATE	

www.struware.com

Code Search

Code: ASCE 7 - 10

Occupancy:

Occupancy Group = R Residential

Risk Category & Importance Factors:

II	
1.00	use 0.60 NOTE: Output will be nominal wind pressures
1.00	
1.00	
	II 1.00 1.00 1.00

Type of Construction:

Fire Rating:

Roof =	0.0 hr
Floor =	0.0 hr

Building Geometry:

Roof angle (θ)	0.00 / 12	0.0 deg
Building length (L)	62.0 ft	
Least width (B)	40.0 ft	
Mean Roof Ht (h)	33.0 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

<u>Roof</u>	0 to 200 sf:	20 psf	use 25.0 psf
	200 to 600 sf:	25 psf	
	over 600 sf:	25 psf	

Floor:

Typical Floor		40 psf
Partitions		N/A
Partitions	N/A	
Partitions		N/A
Partitions	N/A	

6810 NE 149th St Kenmore, WA 206-427-7233

JOB TITLE 3632 90th Ave SE (Mithalia)

JOB NO. 210-2022	SHEET NO.	
CALCULATED BY JDA	DATE	7/16/22
CHECKED BY	DATE	

Wind Loads :	ASCE 7- 10				
Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2 Type of roof	110 mph 85.2 mph II B Enclosed Building +/-0.18 0.85 0.720 0.720 0.720 Gable	I		74	∨(z)
Topographic Factor (ł	(<u>zt)</u> 2D Esserpment			V(z)	x(upwind) x(downwind)
Hill Height (H)	2D Escarpment 0.0 ft		H< 60ft exp B		
Half Hill Length (Lh)	39.4 ft		∴ Kzt=1.0		H H
Actual H/Lh =	0.00				H/2
Use H/Lh =	0.00			*****	
Modified Lh =	39.4 ft			<u>E</u> \$	<u>SCARPMENT</u>
From top of crest: x =	0.0 ft				
Bldg up/down wind?	upwind				V(Z)
H/Lh= 0.00	K ₁ =	0.000			-Speed-up
x/Lh = 0.00	K ₂ =	1.000		V(Z)	x(upwind) x(downwind)
z/Lh = 0.84	K ₃ =	0.123			Н/211
At Mean Roof Ht:					H/2
Kzt =	(1+K ₁ K ₂ K ₃)^2 =	1.00	use 1.60	REPERTING	THE PARTY OF THE P
				2D RIDGE	or 3D AXISYMMETRICAL HILL

Gust Effec	ct Factor	Flexible structure if natural frequency < 1 Hz (T > 1 second).
h =	33.0 ft	However, if building $h/B < 4$ then probably rigid structure (rule of thumb).
B =	40.0 ft	h/B = 0.83 Rigid structure
/z (0.6h) =	30.0 ft	
		G = 0.85 Using rigid structure default
Rigid	Structure	Flexible or Dynamically Sensitive Structure
ē =	0.33	Natural Frequency $(\eta_1) = 0.0$ Hz
ł =	320 ft	Damping ratio (β) = 0
z _{min} =	30 ft	/b = 0.45
c =	0.30	/α = 0.25
g _Q , g _v =	3.4	Vz = 70.9
$L_7 =$	310.0 ft	N ₁ = 0.00
Q =	0.89	$R_n = 0.000$

L _z =	310.0 ft	N ₁ =	0.00
Q =	0.89	R _n =	0.000
I _z =	0.30	R _h =	28.282
G =	0.86 use G = 0.85	R _B =	28.282
		R _L =	28.282

33.0 ft h =

0.000

0.000

0.000

η =

η =

η =

0.000

JOB TITLE 3632 90th Ave SE (Mithalia)

			6810 NE 149th St
	SHEET NO.	JOB NO. 210-2022	Kenmore, WA
7/16/22	DATE	CALCULATED BY JDA	206-427-7233
	DATE	CHECKED BY	

Test for Enclosed Building: A building that does not qualify as open or partially enclosed.

Test for Open Building:

All walls are at least 80% open. As ≥ 0.8 Ag

Test for Partially Enclosed Building:

	Input		Test	
Ao	0.0 sf	Ao ≥ 1.1Aoi	YES]
Ag	0.0 sf	Ao > 4' or 0.01Ag	NO	
Aoi	0.0 sf	Aoi / Agi ≤ 0.20	NO	Building is NOT
Agi	0.0 sf	-		Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag Aoi / Agi \leq 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):		0 cf
	Ri =	1.00

Altitude adjustment to constant 0.00256 (caution - see code) :

Altitude =	0 feet	Average Air Density =	0.0765 lbm/ft ³
Constant =	0.00256		

JOB TITLE 3632 90th Ave SE (Mithalia)

6810 NE 149th St		
Kenmore, WA	JOB NO. 210-2022	SHEET NO.
206-427-7233	CALCULATED BY JDA	DATE 7/16/22
	CHECKED BY	DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) Enclosed/partially enclosed only

Kz = Kh (case 1) =	0.72
Base pressure (qh) =	18.2 psf
GCpi =	+/-0.18

Edge Strip (a) =	4.0 f
End Zone (2a) =	8.0 f
Zone 2 length =	20.0 f

Wind Pressure Coefficients

	C	ASE A			l′	CASE B	
ſ		$\theta = 0 \deg$					
Surface	GCpf	w/-GCpi	w/+GCpi		GCpf	w/-GCpi	w/+GCpi
1	0.40	0.58	0.22		-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87	1	-0.69	-0.51	-0.87
3	-0.37	-0.19	-0.55	1	-0.37	-0.19	-0.55
4	-0.29	-0.11	-0.47	1	-0.45	-0.27	-0.63
5				1	0.40	0.58	0.22
6	1		ļ	1	-0.29	-0.11	-0.47
1E	0.61	0.79	0.43		-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25	1	-1.07	-0.89	-1.25
3E	-0.53	-0.35	-0.71	1	-0.53	-0.35	-0.71
4E	-0.43	-0.25	-0.61	1	-0.48	-0.30	-0.66
5E				1	0.61	0.79	0.43
6F				1	-0.43	-0.25	-0.61

Nominal Wind Surface Pressures (psf)

1	10.6 4.0	-4.9	-11.5
2	-9.3 -15.8	-9.3	-15.8
3	-3.5 -10.0	-3.5	-10.0
4	-2.0 -8.6	-4.9	-11.5
5		10.6	4.0
6		-2.0	-8.6
1E	14.4 7.8	-5.5	-12.0
2E	-16.2 -22.7	-16.2	-22.7
3E	-6.4 -12.9	-6.4	-12.9
4E	-4.5 -11.1	-5.5	-12.0
5E		14.4	7.8
6E		-4.5	-11.1

Parapet

Windward parapet = Leeward parapet = 0.0 psf (GCpn = +1.5)0.0 psf (GCpn = -1.0)

Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse of	lirection	(normal to L)
Interior Zone:	Wall	12.6 psf
	Roof	-5.8 psf **
End Zone:	Wall	18.9 psf
	Roof	-9.8 psf **

	Longitudinal	direction	(parallel to	o L)
--	--------------	-----------	--------------	------

Interior Zone:	Wall	12.6 psf
End Zone:	Wall	18.9 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

Windward roof

overhangs =

Location of MWFRS Wind Pressure Zones

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram.

ASCE 7 -99 and ASCE 7-10 (& later)

6810 NE 149th St Kenmore, WA 206-427-7233

JOB NO. 210-2022 SHEET NO. CALCULATED BY JDA DATE 7/16/22 CHECKED BY DATE

Nominal Wind Pressures

Wind Loads - Components & Cladding : h <= 60'

0.72	h =	33.0 ft
18.2 psf	a =	4.0 ft
0.0 ft	GCpi =	+/-0.18
0.0 deg		
Gable		
	0.72 18.2 psf 0.0 ft 0.0 deg Gable	0.72 h = 18.2 psf a = 0.0 ft GCpi = 0.0 deg Gable

<u>Roof</u>	C	GCp +/- GCp	pi	Surface Pressure (psf)			User input	
Area	10 sf	50 sf	100 sf	10 sf	50 sf	100 sf	10 sf	147 sf
Negative Zone 1	-1.18	-1.11	-1.08	-21.5	-20.2	-19.7	-21.5	-19.7
Negative Zone 2	-1.98	-1.49	-1.28	-36.0	-27.1	-23.3	-36.0	-23.3
Negative Zone 3	-2.98	-1.79	-1.28	-54.2	-32.6	-23.3	-54.2	-23.3
Positive All Zones	0.48	0.41	0.38	10.0	10.0	10.0	10.0	10.0
Overhang Zone 1&2	-1.70	-1.63	-1.60	-30.9	-29.7	-29.1	-30.9	-26.9
Overhang Zone 3	-2.80	-1.40	-0.80	-51.0	-25.5	-14.6	-51.0	-14.6

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adjacent wall pressure reduced by internal pressure of 3.3 psf

<u>Parapet</u>					
qp = 0.0 psf		Surfa	ce Pressure	e (psf)	User input
	Solid Parapet Pressure	10 sf	100 sf	500 sf	40 sf
CASE A = pressure towards building (pos)	CASE A : Interior zone:	0.0	0.0	0.0	0.0
CASE B = pressure away from bldg (neg)	Corner zone:	0.0	0.0	0.0	0.0
	CASE B : Interior zone:	0.0	0.0	0.0	0.0
	Corner zone:	0.0	0.0	0.0	0.0

Walls	(GCp +/- GCp	pi	Surfa	ce Pressure	(psf)	User	input
Area	10 sf	100 sf	500 sf	10 sf	100 sf	500 sf	10 sf	91 sf
Negative Zone 4	-1.17	-1.01	-0.90	-21.3	-18.4	-16.4	-21.3	-18.5
Negative Zone 5	-1.44	-1.12	-0.90	-26.2	-20.4	-16.4	-26.2	-20.7
Positive Zone 4 & 5	1.08	0.92	0.81	19.7	16.8	14.7	19.7	16.9

Note: GCp reduced by 10% due to roof angle <= 10 deg.

Stepped roofs $\theta \leq 3^{\circ}$ h ≤ 60' & alt design h<90'

1

h ≤ 60' & alt design h<90'

Sawtooth $10^{\circ} < \theta \le 45^{\circ}$

Monoslope roofs $10^\circ < \theta \le 30^\circ$

Hip $7^\circ < \theta \le 27^\circ$

Monoslope roofs

h ≤ 60' & alt design h<90'

 $3^\circ < \theta \le 10^\circ$

Roofs w/ $\theta \le 10^{\circ}$

and all walls

h > 60'

& alt design h<90'

a

Multispan Gable $\theta \leq 7$ degrees &

h ≤ 60' & alt design h<90'

Monoslope ≤ 3 degrees

Location of C&C Wind Pressure Zones

Atlas Consulting SE, Inc. 6810 NE 149th St

Kenmore, WA

206-427-7233

JOB TITLE 3632 90th Ave SE (Mithalia)

ЈОВ NO. 210-2022 SHEET NO. CALCULATED BY JDA DATE CHECKED BY DATE

Nominal Wind Pressures

7/16/22

Code: Date: U/17/2002 Definit: Center fine Impact Minibals Vinit Unit: In Unit: In Unit: Intel (Unit: Intel (Unit: Vinit Unit: Intel (Unit: Intel (Unit: Intel (Unit: Intel (Unit: Vinit Unit: Intel (Unit: Intel (Uni										nation	Project Inform	
Understand Opening 2 Lift(s)		17/2022	Date: 10							2010 MPC	ode:	
With line Multiple Val Line N - Upper to Roof Val Line N - Upper to Roof Val Line Las(10) Las(10) Las(10) Las(10) Las(10) Las(10) Las(10) Las(10) Las(10) Las(10) Shear Wall Calculation Variables V EX06 all Li Ex06 all Scool opening: viz = viz = vit/(viz = viz) Scool opening: viz = viz = vit/(viz = viz) Scool opening: viz = v										Centerline	lient.	
Valid line: N - Upper to Roof View I Li(1) Lol(1) Lol(1) <thlol(1)< th=""> <</thlol(1)<>										Mithalia	Project:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										N - Upper to Roof	Wall Line:	
$\frac{1}{10} + \frac{1}{10} $												
$\frac{1}{100} = \frac{1}{100} = \frac{1}$			L3(ft)	ft)	Lo2	L2(ft)	(ft)	<u>لەمار</u>	L1(ft)	v (II		
$ \frac{1}{10} + \frac{1}{10}$			<u>ع</u> 1						L	<u> </u>		
$\frac{1}{12} \frac{1}{2} 1$			bove (
$\frac{1}{10^{10} \text{ cm}^{10} $			¥									
$\frac{1}{10} + \frac{1}{10} $		_	(ft)									
$ \frac{1}{10000000000000000000000000000000000$		an(ft,	open									
$\frac{1}{12} \frac{1}{20011} \frac{1}{12} \frac{1}{12$		<u>م</u>	-									
$ \frac{1}{1 + (11 + $			E									
$\frac{1}{12} + \frac{1}{12} $			elow (
$\frac{1}{1 + 1014} + \frac{1}{1000} +$			<u>گ</u>									
$\frac{1}{12} \frac{1}{700 \text{ ft}} \frac{1}{12} \frac{1}{700 \text{ ft}} \frac{1}{12} 1$												
$\frac{1}{12} \frac{706 \text{ fb}}{12} \frac{1}{12} \frac{706 \text{ fb}}{12} \frac{1}{12} \frac$						L _{wall} (ft)			•			
$\frac{1}{12} \frac{1}{2,00 \text{ ft}} \frac{1}{1,00 \text{ fc}} \frac$	-	21 /			Variables	I Calculation	Shear Wa					
$\frac{1}{12} - \frac{3}{200} \frac{1}{11} + \frac{3}{12} - \frac{3}{200} \frac{1}{11} + \frac{1}{12} - \frac{1}{20} + \frac{1}{11} + \frac{1}{12} - \frac{1}{12} + \frac{1}{11} + \frac{1}{11$		2bs/h	actor Method =	Adj. Fac		Opening 2		Opening 1	(V 6706 lbf		
$\frac{13}{12} \frac{14421}{4421} + \frac{1}{142} \frac{32031}{90011} + \frac{1}{162} \frac{32011}{90011} + \frac{1}{162} \frac{32011}{20011} + \frac{1}{162} \frac{1}{20011} + \frac{1}{162} \frac{1}{20011} + \frac{1}{162} \frac{1}{20011} + \frac{1}{162} \frac{1}{20011} + \frac{1}{162} \frac{1}{162} \frac{1}{162} + 1$		Adj. Factor		P1-b /I1-	•	2.00 ft	n _a z	2.00 ft	n _a 1	L1 8.42 ft		
$\frac{1}{1} + \frac{1}{1} + \frac{1}$		N/A	0.03	P1-11 ₀ /L1-		3.00 ft	h. 2	3.00 ft	h.1	13 4.42 ft		
$L_{un} = 3.04 \text{ ft}$ 1. Hold down forces: H = N _{max} /L _{mail} 2283 lbf 1. Hold down forces: H = N _{max} /L _{mail} 2283 lbf 2. Huit shear above + below opening: First opening: wa = wb = H(/h_1 ± h_1) = 457 plf Second opening: wa = wb = H(/h_1 ± h_1) = 457 plf 3. Total boundary force above + below opening: 3. Concer forces 4. Concer forces 4. Concer forces 1. = 01(11)/(L1+2) = 2244 lbf F2 = 01(12)/(L1+2) = 1266 lbf F3 = 02(12)/(L1+12) = 1266 lbf F3 = 02(12)/(L1+12) = 1266 lbf F3 = 02(12)/(L1+12) = 450 lbf T2 = (L2 ⁺ L02)/(L2+13) = 1.23 lbf T3 = (L2 ⁺ L02)/(L2+13) = 1.23 lbf T4 = (L2 ⁺ L02)/(L2+13) = 0.77 lbf 5. Tributary length of opening: 1. = (L2 ⁺ L02)/(L2+13) = 1.23 lbf T4 = (L2 ⁺ L02)/(L2+13) = 0.77 lbf 5. Unit shear in comer zones 1. Unit shear in comer zones 1. Unit shear in co		N/A	1.24	P3=h_/L3=		2.00 ft	Lo2	9.00 ft	Lo1	h		
$\frac{1}{10} + \frac{1}{10} $			=· I	, 10		2.50.10			-01	L _{wall} 30.84 ft		
$\frac{1.4 \text{ Hold-down forces: } H = Vh_{unif} (h_{unif} + h_{u}) = 457 \text{ pir}}{\text{First opening: } val = vbl = H/(h_{u}+h_{u}) = 457 \text{ pir}} \\ \frac{1.6 \text{ Init shear above + below opening: } val = vbl = H/(h_{u}+h_{u}) = 457 \text{ pir}}{\text{Second opening: } val = vbl = H/(h_{u}+h_{u}) = 457 \text{ pir}} \\ \frac{1.6 \text{ Init shear beside opening: } val = vbl = H/(h_{u}+h_{u}) = 457 \text{ pir}}{\text{Second opening: } val = vbl = H/(h_{u}+h_{u}) = 457 \text{ pir}} \\ \frac{1.6 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 4110 \text{ Init shear beside opening: } (1 + val + (la)) = 410 \text{ Init shear beside opening: } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 4100 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 410 \text{ Init shear beside opening } (1 + val + (la)) = 4100 \text{ Init shear beside opening } (1 + val + (la)) = 41$										wail		
$\frac{1. \text{Hold-down forces: H = VM_{mar}/L_{walt}}{2. \text{ Unit shear above + below opening}} \\ \frac{2. \text{ Unit shear above + below opening}}{\text{First opening: val = vbl = H/(h_1^{-1}h_1^{-1}) = 457 \text{ pif}} \\ \frac{3. \text{ Total boundary force above + below opening}}{\text{Second opening: } val = vbl = H/(h_1^{-1}h_1^{-1}) = 457 \text{ pif}} \\ \frac{3. \text{ Total boundary force above + below opening}}{\text{Second opening: } 01 = val \times (10.3) = 4110 \text{ lbf}} \\ \frac{3. \text{ Total boundary force above + below opening}}{\text{First opening: } 01 = val \times (10.3) = 4110 \text{ lbf}} \\ \frac{3. \text{ Total boundary force above + below opening}}{\text{First opening: } 01 = val \times (10.3) = 4110 \text{ lbf}} \\ \frac{4. \text{ Corner forces}}{\text{First opening: } 01 = val \times (10.2) = 4310 \text{ lbf}} \\ \frac{7. \text{Resistance to corner forces}}{\text{Rl} = val^{+1}.1 = 2289 \text{ lbf}} \\ \frac{8. \text{ Difference corner force} + \text{resistance}}{\text{Rl} = val^{+1}.1 = 2899 \text{ lbf}} \\ \frac{8. \text{ Difference corner force} + \text{resistance}}{\text{Rl} = val^{+1}.1 = 655 \text{ lbf}} \\ \frac{8. \text{ Difference corner force} + \text{resistance}}{\text{Rl} = val^{+1}.2 \text{ lbf}} \\ \frac{8. \text{ Difference corner force} + \text{resistance}}{\text{Rl} = val^{+1}.2 \text{ lbf}} \\ \frac{8. \text{ Difference corner force} + \text{resistance}}{\text{Rl} = val^{+1}.2 \text{ lbf}} \\ \frac{8. \text{ Difference corner force} + \text{resistance}}{\text{Rl} = val^{+1}.2 \text{ lbf}} \\ \frac{8. \text{ Difference corner force} + \text{resistance}}{\text{Rl} = val^{+1}.2 \text{ lbf}} \\ \frac{1.4 \text{ (lal^{+1} to2)/(lal^{+1}.2) = 4.91 \text{ ft}}{\text{lal} = (lal^{+1} to2)/(lal^{+1}.2) = 0.77 \text{ ft}} \\ \frac{vcl = (Rl^{+1}.4)/la = 176 \text{ pff}}{vcl = (Rl^{+1}.4)/la = 176 \text{ pff}} \\ \frac{vcl = (Rl^{+1}.4)/la = 176 \text{ pff}}{vcl = (Rl^{+1}.4)/la = 176 \text{ pff}} \\ \frac{1.4 \text{ lb}}{\text{lb}} \\ \frac{1.4 \text{ lb}}{\text{lb}}$												
$\frac{2. \text{ Unit shear above + below opening: } val = vbl = H/(h_1 a+h_2) = 457 \text{ pif}}{\text{Second pening: } val = vbl = H/(h_1 a+h_2) = 457 \text{ pif}} vl = (V/L)(14-11)/(1 = 344 \text{ pif}}{vl = (V/L)(12+12+13)/2} 382 \text{ pif}} vl = (V/L)(12+12+13)/2 = 382 \text{ pif}}{vl = (V/L)(12+12+13)/2} vl = 352 \text{ pif}} vl = (V/L)(12+12+13)/2 = 382 \text{ pif}}{vl = (11+v)^2+12+v^2+2+v^2+3+97} 6.706 \text{ bif } 0}$ $\frac{3. \text{ Total boundary force above + below opening: } 02 = val x (L02) = 913 \text{ bif}}{\text{Second opening: } 02 = val x (L02) = 913 \text{ bif}} \frac{7. \text{Resistance to corner forces}}{R1 = v1^{+1}L1 = 2899 \text{ bif}} \frac{R2 = v2^{+1}L2 = 2677 \text{ bif}}{R3 = v3^{+1}3 = 1129 \text{ bif}}$ $\frac{4. \text{ Corner forces}}{F1 = 01(11)/(11+12) = 2244 \text{ bif}} \frac{7. \text{ Resistance to corner forces}}{R3 + 3^{+1}3 = 201(2)/(12+13) = 560 \text{ bif}} \frac{8. \text{ Difference corner force + resistance}}{R1 + 11 = 655 \text{ bif}} \frac{R2 + 2^{+2}L2 = 2}{R3 + 4} = 776 \text{ bif}} \frac{R2 + 2^{+1}L1 = 2899 \text{ bif}}{R3 = v3^{+1}3 = 222 \text{ bif}} \frac{R2 + 2^{+1}L1 = 2899 \text{ bif}}{R3 = v3^{+1}3 = 222 \text{ bif}} \frac{R2 + 2^{+1}L1 = 289 \text{ bif}}{R3 + 4} \frac{R2 + 11}{R3 = 01(12)/(12+12) = 4.91 \text{ ft}} \frac{R2 + 12 + 11}{R3 = 01(12)/(12+12) = 4.91 \text{ ft}} \frac{R2 + 12 + 11}{R3 = (2^{+1}C2)/(12+13) = 0.77 \text{ ft}} V(L0) + V(L0$				eside opening	6. Unit shear l		2283 lbf		I/L _{wall}	1. Hold-down forces: H = Vh _w		
First opening: val = vbl = H/(h_1+h_2) = 457 pff v = (V/(1)(7+1/2+13)/(2) = 382 pf Second opening: val = vbl = H/(h_1+h_2) = 457 pff val = (V/(1)(7+1/2+13)/(2) = 382 pf Second opening: val = vbl = H/(h_1+h_2) = 457 pff val = (V/(1)(7+1/2+13)/(2) = 382 pf Second opening: 02 = val x (Lo2) = 913 lbf 7. Resistance to comer forces 7. First opening: 01 = val x (Lo1) = 4110 lbf 7. Resistance to comer force		344 plf	/L)(L1+T1)/L1 =	v1 = (V/I		-			pening	2. Unit shear above + below o		
Second opening: va2 = vb2 = H/(h_2+h_2) = 457 pf 3. Total boundary force above + below opening: First opening: 01 = va1 x (L01) = 4110 lbf Second opening: 02 = va2 x (L02) = 913 lbf 4. Corner forces T = 01(L1)/(L1+L2) = 2244 lbf F2 = 01(L2)/(L1+L2) = 2244 lbf F2 = 01(L2)/(L1+L2) = 2244 lbf F3 = 02(L2)/(L2+L3) = 550 lbf F4 = 02(L3)/(L2+L3) = 550 lbf T3 = (L2 ⁺ L01)/(L1+L2) = 4.91 ft T3 = (L2 ⁺ L01)/(L1+L2) = 4.91 ft T3 = (L2 ⁺ L01)/(L1+L2) = 4.91 ft T3 = (L2 ⁺ L02)/(L2+L3) = 0.77 ft V(1b)		382 plf	T2+L2+T3)/L2 =	v2 = (V/L)(T2			457 plf	/(h _a 1+h _b 1) =	va1 = vb1 = H/	First opening		
Check v1*11+v2*12+v3*13=v? 6706 lbf o 3. Total boundary force above + below opening: First opening: 01 = va1 x (101) = 4110 lbf Second opening: 02 = va2 x (102) = 913 lbf 4. Comer forces F1 = 01(11)/(11+12) = 2244 lbf F3 = 02(12)/(12+13) = 1266 lbf F3 = 02(12)/(12+13) = 560 lbf F4 = 02(13)/(12+13) = 550 lbf F4 = 02(13)/(12+13) = 550 lbf F3 = 02(12)/(12+13) = 550 lbf F4 = 02(13)/(12+13) = 123 ft T1 = (11*101)/(11+12) = 4.91 ft T3 = (12*102)/(12+13) = 0.77 ft V = (R1-F1)/11 = 78 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(12+13) = 0.77 ft v2 = (R2-F3)/12 = 366 plf T4 = (13*102)/(14+13) = 366 plf T5 = 20(10, 14+13) = 366 plf T4 = (13*102)/(14+13) = 366 plf T5 = 20(10, 14+13) = 366 plf T5 = 20(10,		256 plf	/L)(T4+L3)/L3 =	v3 = (V/I			457 plf	/(h _a 2+h _b 2) =	va2 = vb2 = H/	Second opening		
3. Total boundary force above + below opening: First opening: $O1 = va2 x (LO) = 913$ lbf Second opening: $O2 = va2 x (LO2) = 913$ lbf R1 = v1*L1 = 2899 lbf R1 = v1*L1 = 2244 lbf First opening: $O1 = va2 x (LO2) = 1266$ lbf First opening: $O1 = va2 x (LO2) = 1266$ lbf First opening: $O1 = va2 x (LO2) = 1266$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf First opening: $O1 = va2 x (D1) = 1260$ lbf Summary of sec values for two opening: $O1 = va2 x (D1) = 1260$ lbf Ti = (L1*LO1)/(L1+L2) = 4.91 ft Ti = (L1*LO1)/(L1+L2) = 4.91 ft Ti = (L1*LO1)/(L1+L2) = 0.77 ft VIII (bpenip) Ti = (L1*LO1)/(L1+L2) = 0.77 ft VIII (bpenip) VIII (bpenip) <th colspa<="" td=""><td>K</td><th>6706 lbf OK</th><td>2*L2+v3*L3=V?</td><td>Check v1*L1+v2*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>K</td> <th>6706 lbf OK</th> <td>2*L2+v3*L3=V?</td> <td>Check v1*L1+v2*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	K	6706 lbf OK	2*L2+v3*L3=V?	Check v1*L1+v2*							
First opening: $01 = val \times (1.01) = 4100$ br Second opening: $02 = va2 \times (1.02) = 913$ lbf A. Corner forces F1 = 01(11)/(11+12) = 2244 lbf F2 = 01(12)/(12+12) = 1866 lbf F3 = 02(12)/(12+13) = 353 lbf F4 = 02(12)/(12+13) = 353 lbf F4 = 02(12)/(12+13) = 353 lbf F3 = (12*102)/(12+12) = 4.93 ft T2 = (12*102)/(12+13) = 1.23 ft T2 = (12*102)/(12+13) = 1.23 ft T3 = (12*102)/(12+13) = 1.23 ft T4 = (13*102)/(12+13) = 0.77 ft Vc1 = (R1+F1)/(11 = 78 plf vc2 = (R2+F2+F3)/(2 = 36 plf vc2 = (R2+F2+F3)/(2 = 36 plf vc3 = (R3+F4)/(3 = 176 plf T4 = (13*102)/(12+13) = 0.77 ft Vc1 = (R1+F1)/(11 = 78 plf vc2 = (R2+F2+F3)/(2 = 36 plf vc3 = (R3+F4)/(3 = 176 plf T4 = (13*102)/(12+13) = 0.77 ft V1(b) T4 = (13*102)/(12+13) = 0.77 ft T4 = (13*102)/(12+13) = 0.77 ft T5 = 0.0000000000000000000000000000000000								nings	+ below open	3. Total boundary force above		
Second opening: $02 = va2 \times (Lo2) = 913$ lbf A. Corner forces F1 = 01(1)/(1+12) = 2244 lbf F2 = 01(2)/(12+13) = 2244 lbf F2 = 02(12)/(12+13) = 560 lbf F3 = 02(12)/(12+13) = 353 lbf A. Corner force + resistance F1 = (11*01)/(1+12) = 4.91 ft T2 = (12*102)/(12+13) = 1.23 ft T2 = (12*102)/(12+13) = 1.23 ft T4 = (13*102)/(12+13) = 0.77 ft Vc1 = (R2-F2-F3)/L2 = 36 plf T4 = (13*102)/(12+13) = 0.77 ft Vc1 = (R2-F2-F3)/L2 = 36 plf Vc2 = (R2-F2-F3)/L2 = 36 plf Vc3 = (R3-F4)/L3 = 1.76 plf F4 = 02(13)/(14+12) = 4.91 ft Vc3 = (R3-F4)/L3 = 1.76 plf F4 = 02(13)/(12+13) = 0.77 ft Vc3 = (R3-F4)/L3 = 1.76 plf F4 = 02(13)/(12+13) = 0.77 ft Vc3 = (R3-F4)/L3 = 1.76 plf F4 = 02(13)/(12+13) = 0.77 ft F4 = (13*102)/(12+13) = 0.77 ft F4 = 0.0000000000000000000000000000000000			5	o corner forces	7. Resistance	-	4110 lbf	/a1 x (Lo1) =	pening: O1 = v	First		
$\frac{A. \text{ corner forces}}{F_1 = O1(1)/(1+12) = 224 \text{ lbf}}$ $F_2 = O1(12)/(1+12) = 1266 \text{ lbf}$ $F_2 = O1(12)/(1+12) = 1266 \text{ lbf}$ $F_3 = O2(12)/(1+12) = 1266 \text{ lbf}$ $F_3 = O2(12)/(1+12) = 353 \text{ lbf}$ $\frac{B. \text{ Difference corner force + resistance}}{R_2 + r_2 + r_3} = 252 \text{ lbf}$ $R_2 + r_2 + r_3 = 252 \text{ lbf}$ $R_2 + r_2 + r_3 = 252 \text{ lbf}$ $R_3 - F_4 = 776 \text{ lbf}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 766 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 776 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 766 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 766 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 766 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - F_4 = 766 \text{ lbf}}$ $\frac{P. \text{ Unit shear in corner zones}}{R_3 - R_4 - $		2899 lbf	R1 = v1*L1 =				913 lbf	/a2 x (Lo2) =	pening: O2 = v	Second		
$\frac{4 \cdot \text{Uniter Notes}}{F_{1}^{2} = 01(12)/(11+12) = 2244 \text{ lbf}} F_{2}^{2} = 01(22)/(12+13) = 3660 \text{ lbf}} F_{3}^{2} = 02(12)/(12+13) = 560 \text{ lbf}} \frac{8 \cdot \text{Difference corner force + resistance}}{R_{1} + f_{1}} = \frac{655 \text{ lbf}}{R_{2} - R_{2} + R_{3}} = \frac{1129 \text{ loi}}{R_{1} + f_{1}} = \frac{655 \text{ lbf}}{R_{2} - R_{2} + R_{3}} = \frac{1129 \text{ loi}}{R_{1} + f_{1}} = \frac{655 \text{ lbf}}{R_{2} - R_{2} + R_{3}} = \frac{1129 \text{ loi}}{R_{1} + f_{1}} = \frac{655 \text{ lbf}}{R_{2} - R_{2} + R_{3}} = \frac{1129 \text{ loi}}{R_{1} + f_{1}} = \frac{655 \text{ lbf}}{R_{2} - R_{2} + R_{3}} = \frac{1129 \text{ loi}}{R_{1} + f_{1}} = \frac{655 \text{ lbf}}{R_{2} - R_{2} + R_{3}} = \frac{1129 \text{ loi}}{R_{1} + f_{1}} = \frac{1129 \text{ loi}}{R_{2} + R_{2} + R_{3}} = \frac{1129 \text{ loi}}{R_{1} + R_{1}} = \frac{1129 \text{ loi}}{R_{1} + R_{1}}$		2677 lbf	R2 = v2*L2 =							A Corner forces		
$\frac{1}{12} - 0.1(1)(12+12) = 1266 \text{ lbf}}{15 = 0.2(12)/(12+13) = 560 \text{ lbf}}$ $F_3 = 0.2(12)/(12+13) = 560 \text{ lbf}}$ $F_4 = 0.2(13)/(12+13) = 560 \text{ lbf}}$ $F_4 = 0.2(13)/(12+13) = 353 \text{ lbf}}$ $\frac{8. \text{ Difference corner force + resistance}}{R_2-F_2-F_3} = 2.52 \text{ lbf}}$ $R_3-F_4 = 7.76 \text{ lbf}}$ $R_3-F_4 = 7.76 \text{ lbf}}$ $R_3 = (12+10)/(11+12) = 4.99 \text{ ft}}$ $r_2 = (12+10)/(11+12) = 4.99 \text{ ft}}$ $r_2 = (12+10)/(12+13) = 0.77 \text{ ft}}$ $\frac{9. \text{ Unit shear in corner zones}}{r_2 = (R_2-F_2-F_3)/(12)} = 36 \text{ pff}}$ $r_2 = (R_3-F_4)/(13) = 1.76 \text{ pff}}$ $\frac{\sqrt{(16)}}{\sqrt{14}}$ \sqrt		1129 lbf	K3 = V3*L3 =				2244 lbf	1)//1+1-2) =	F1 - 01/11	4. Corner forces		
$\frac{1}{12} - O_{1(2)}/(12+13) = 1000101$ F3 = 0.02(2)/(12+13) = 500101 F4 = 0.02(2)/(12+13) = 500101 F4 = 0.02(2)/(12+13) = 353101 R1-F1 = 655107 R2-F2-F3 = 252107 R3-F4 = 7761017 R3-F4 =			esistance	orner force + res	8 Difference (1866 lbf	2)/(L1+L2) =	F1 = 01(L) F2 = 01(L)			
$F4 = O2(13)/(12+13) = 353 \text{ bbf}$ $F4 = O2(13)/(12+13) = 353 \text{ bbf}$ $R2 + F2 + F3 = 252 \text{ bbf}$ $R3 - F4 = 776 \text{ bbf}$ $R3 - F4 = 776 \text{ bbf}$ $R3 - F4 = 776 \text{ bbf}$ $R2 - F2 + F3 = 252 \text{ bbf}$ $R3 - F4 = 776 \text{ bbf}$ $R2 - F2 + F3 = 252 \text{ bbf}$ $R3 - F4 = 776 \text{ bbf}$ $r2 = (12^{+}(0.2)/(12+13) = 1.23 \text{ bt}$ $r2 = (12^{+}(0.2)/(12+13) = 1.23 \text{ bt}$ $r4 = (13^{+}(0.2)/(12+13) = 0.77 \text{ ft}$ $rc2 = (R2 - F3)/(12 = 36 \text{ pbf})$ $rc2 = (R2 - F3)/(12$		655 lbf	R1-F1 =			-	560 lbf	2)/(L2+L3) =	F3 = 02(L2)			
$R_{3}-F_{4} = 776 \text{ lbf}$ $\frac{5. \text{ Tributary length of openings}}{11 = (1.1^{4} \text{L01})/(1.1 + 1.2) = 4.99 \text{ ft}}$ $T_{2} = (1.2^{4} \text{L01})/(1.1 + 1.2) = 4.09 \text{ ft}}$ $T_{3} = (1.2^{4} \text{L02})/(1.2 + 1.3) = 1.23 \text{ ft}}$ $r_{4} = (1.3^{4} \text{L02})/(1.2 + 1.3) = 0.77 \text{ ft}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc2} = (R_{2}-F_{2}-F_{3})/(1.2) = 36 \text{ pif}}$ $r_{3} = (1.2^{4} \text{L02})/(1.2 + 1.3) = 0.77 \text{ ft}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc2} = (R_{2}-F_{2}-F_{3})/(1.2) = 36 \text{ pif}}$ $r_{3} = (1.2^{4} \text{L02})/(1.2 + 1.3) = 0.77 \text{ ft}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc2} = (R_{2}-F_{2}-F_{3})/(1.2) = 36 \text{ pif}}$ $r_{3} = (1.2^{4} \text{L02})/(1.2 + 1.3) = 0.77 \text{ ft}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{ vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{ vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{ vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{ vc3} = (R_{3}-F_{4})/(1.3) = 1.76 \text{ pif}}$ $\frac{9. \text{ Unit shear in corner zones}}{\text{ vc3} = (R_{3}-F_{4})/(1.3) = 1.76 $		252 lbf	R2-F2-F3 =				353 lbf	3)/(L2+L3) =	F4 = O2(L3			
$\frac{5. \text{ Tributary length of openings}}{T_2 = (L^4 \cup 01)/(L^4 + L_2) = 4.99 \text{ ft}}$ $T_2 = (L^2 \cup L_2)/(L^2 + L_3) = 1.23 \text{ ft}$ $T_4 = (L^3 \cup L_2)/(L^2 + L_3) = 0.77 \text{ ft}$ $\frac{9. \text{ Unt shear in corner zones}}{vc2 = (R2 + F2 + F3)/L2 = 36 \text{ plf}}$ $vc3 = (R3 + 4)/L3 = 176 \text{ plf}$ $vc3 = (R3 + 4)/L3 = 176 \text{ plf}$ $\frac{1}{99}$ $\frac{9}{99}$ $\frac{9}{100}$ $\frac{9}{99}$ $\frac{9}{100}$ $\frac{1}{100}$ $\frac{1}{$		776 lbf	R3-F4 =									
$r_{1} = (L_{1}^{+}L_{0}^{-1})/(L_{1}+L_{2}) = 4.91 \text{ ft}$ $r_{2} = (L_{2}^{+}L_{0}^{-1})/(L_{1}+L_{2}) = 4.09 \text{ ft}$ $r_{3} = (L_{2}^{+}L_{0}^{-2})/(L_{1}+L_{3}) = 1.23 \text{ ft}$ $r_{4} = (L_{3}^{+}L_{0}^{-2})/(L_{1}+L_{3}) = 0.77 \text{ ft}$ $r_{5} = (L_{3}^{+}L_{1}+L_{3}^{-2})/(L_{3}^{-2$;	5. Tributary length of opening		
$r_{2} = (l_{2}^{*}l_{0}l)/(l_{1}+l_{2}) = 4.09 \text{ ft} vc1 = (R_{1}-F_{1})/(l_{1} = 78 \text{ plf} \\ T_{3} = (l_{2}^{*}l_{0}l)/(l_{2}+l_{3}) = 1.23 \text{ ft} vc2 = (R_{2}-F_{2}-F_{3})/(L_{2} = 36 \text{ plf} \\ T_{4} = (l_{3}^{*}l_{0}l)/(l_{2}+l_{3}) = 0.77 \text{ ft} vc3 = (R_{3}-F_{4})/L_{3} = 176 \text{ plf} \\ \hline V(lb) \\ \hline I = \frac{V(lb)}{I} \\ \hline I = \frac{V(lb)}$				n corner zones	9. Unit shear i		4.91 ft	1)/(L1+L2) =	T1 = (L1*Lo1			
$\frac{12^{4} (L2^{4} L02)/(L2^{2} L3) = 1.23 \text{ ft}}{14 = (L3^{4} L02)/(L2^{2} L3) = 0.77 \text{ ft}} \text{ vc2} = (R2-F2-F3)/L2 = 36 \text{ plf}}{176 \text{ plf}}$ $\frac{V(lb)}{14 = (L3^{4} L02)/(L2+L3) = 0.77 \text{ ft}} \text{ vc3} = (R3-F4)/L3 = 176 \text{ plf}}{176 \text{ plf}}$ $\frac{V(lb)}{16 + 1000 \text{ pl}} \text{ pl}}{16 + 1000 \text{ pl}} \text{ pl}} \text{ pl}} \text{ pl}} \frac{1000 \text{ pl}}{1000 \text{ pl}} \text{ pl}}{1000 \text{ pl}} \text{ pl}} \frac{1000 \text{ pl}}{1000 \text{ pl}} \text{ pl}}{1000 \text{ pl}} \text{ pl}} \frac{1000 \text{ pl}}{1000 \text{ pl}} \text{ pl}}{1000 \text{ pl}} \frac{1000 \text{ pl}}{1000 \text{ pl}}}{1000 \text{ pl}} \frac{1000 \text{ pl}}{1000 \text{ pl}} $		78 plf	L = (R1-F1)/L1 =	vc1 :			4.09 ft	1)/(L1+L2) =	T2 = (L2*Lo1			
$T4 = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $V(lb)$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L2+L3) = 0.77 \text{ ft} \qquad vc3 = (R3-F4)/L3 = 176 \text{ pft}$ $If = (L3^*L02)/(L3+L3)/(L3+L3)/L3 = 0.77 \text{ ft}$ $If = (L3^*L02)/(L2+L3)/(L3+L3+L3)/(L3+L3)/(L3+L3)/(L3+L3)/(L3+L3)/(L3+L3)/(L3+L3)/(L3+L3)/$		36 plf	(R2-F2-F3)/L2 =	vc2 = (F			1.23 ft	2)/(L2+L3) =	T3 = (L2*Lo2			
$\frac{v(b)}{f} + \frac{v(b)}{f} + v$		176 plf	3 = (R3-F4)/L3 =	vc3 :			0.77 ft	2)/(L2+L3) =	T4 = (L3*Lo2			
Image: constraint of the constraint										V (II		
$\frac{1}{100} + \frac{1}{100} + \frac{1}$									•	<u> </u>		
$\frac{1}{1000} = \frac{1}{1000} + 1$												
$\frac{1}{1000} = \frac{1}{1000} + 1$												
$\frac{1}{1} \frac{1}{1} \frac{1}$			9	5		4	3	4	5			
neck Summary of Shear Values for Two Openings iveral in the second s			Ē	Ē		Ē	Lin	5				
$\frac{1}{10000000000000000000000000000000000$												
$\frac{ }{H_{(lb)}} + \frac{1}{1000} +$												
$\frac{1}{H(lb)}$ heck Summary of Shear Values for Two Openings ne 1: vc1(h_1+h_1)+v1(h_01)=H? 389 1894 ne 2: va1(h_1+h_b1)-vc1(h_1+h_b1)-v1(h_01)=0? 2283 389 1894 ne 3: vc2(h_1+h_b1)+vc1(h_1+h_b1)=0? 180 2103 2283 ne 4: va2(h_2+h_b2)-vc1(h_2)-vc2(h_2+h_b2)=0? 2283 2103 180 ne 5: va2(h_2+h_b2)-vc1(h_2+h_b2)=0? 2283 2103 180 ne 5: va2(h_2+h_b2)-vc1(h_2+h_b2)=0? 2083 210 ne 5: va2(h_2+h_b2)=0? 2083 210 ne 5: va2(h_2+h_b2)=0? 2083 210 ne 5: va2(h_2+h_b2)=0? 2083 210 ne 5: va2												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
+rub Hub heck Summary of Shear Values for Two Openings 389 ne 1: vc1(h_a1+h_b1)+v1(h_b1)=H? 389 ne 2: va1(h_a1+h_b1)+vc1(h_a1+h_b1)=0? 2283 ne 3: vc2(h_a1+h_b1)+vc1(h_a1+h_b1)=0? 180 ne 4: va2(h_a2+h_b2)-vc2(h_a2+h_b2)=0? 2283 2103 180 25: va2(h_a2+h_b2)-vc2(h_a2+h_b2)=0? 2283 278 1405				V _{max}					← ← ← µ//b)			
Heat values for two openings 389 1894 he 1: vc1(h_a1+h_b1)+v1(h_0)=H? 389 1894 he 2: va1(h_a1+h_b1)+vc1(h_a1+h_b1)=0? 2283 389 1894 he 3: vc2(h_a1+h_b1)+vc1(h_a1+h_b1)=0? 180 2103 2283 he 4: va2(h_a2+h_b2)-vc2(h_a2+h_b2)=0? 2283 2103 180 he 5: va2(h_a2+h_b2)-vc2(h_a2+h_b2)=0? 2283 2103 180			11(10)						*''(is)	any of Shoar Values for Two Ores	ock Summer	
$162 : val(h_a^1+h_b^1) \cdot val(h_b^1+h_1) \cdot val(h_b^1) = 0?$ 369 1694 $1e2 : val(h_a^1+h_b^1) \cdot val(h_b^1+h_b^1) = 0?$ 2283 389 1894 $1e3 : vc2(h_a^1+h_b^1) + vc1(h_a^1+h_b^1) = 0?$ 180 2103 2283 $1e4 : va2(h_a^2+h_b^2) + vc2(h_a^2+h_b^2) = 0?$ 2283 2103 180 $1e5 : va2(h_a^1+h_b^1) + vc1(h_a^1+h_b^1) = 0?$ 2283 2103 180	2202 lbf	189/	380						iigs	ary or oriear values for two Oper	eck Summai	
1004 2205 305 1094 1003 2203 305 1094 1003 2203 2103 2283 1004 1004 2203 2103 2283 1004 1004 2203 2103 2103 2103 1004 1004 1004 2203 2103 180 1004	2203 IUI N	1894	389	7783						1+h, 1)-vc1(h 1+h, 1)-v1(h 1)-00	те 1. vc1(II _a 1 1е 2: va1/h 1	
100 2103 2603 ne 4: va2(h_2+h_2)-v2(h_2+h_2)=0? 2283 2103 180 05: va2(h_2+h_2)-v2(h_2+h_2)=0? 2283 2103 140	0	2283	2103	180						1+h_1)+v2(h_1)-va1(h_1+h_1)-0?	ne 3: vc2/h 1.	
10 5 va2(h 2+h, 2)-va2(h 2+h,	0	180	2103	2283						2+h _b 2)-v2(h _o 2)-vc2(h _o 2+h _b 2)=0?	ne 4: va2(h.2	
2200 0/0 1400	0	1405	878	2283						2+h _b 2)-vc3(h _a 2+h _b 2)-v3(h _a 2)=0?	ne 5: va2(h.2	
ne 6: vc3(h ₂ 2+h ₂ 2)+ v3(h ₂ 2) = H? 878 1405	2283 lbf	1405	878							2+h _b 2)+ v3(h _o 2) = H?	ne 6: vc3(h _a 2	
Design Summary*					arv*	n Summ	Desi					
Page Sheathing Canacity 457 off A Torm Deflection 0.434 in 1.7 mm Deflection	0.476 in	Term Deflection			0.434 in	Deflection	4 To		457 plf	Reg Sheathing Conscient		
Reg. Strap Groce 2244 bf 4-Term Story Drift % 0.014 % 3-Term Story Drift %	0.015 %	erm Story Drift %	3-1		0.014 %	tory Drift %	4-Term 9		2244 lbf	Reg. Stran Force		
Rei, HD Force 2283 bf	0.010 /0		5-		0.017 /0	,			2283 lbf	Reg. HD Force		
Reg. Shear Wall Anchorage Force 217 plf									217 plf	g. Shear Wall Anchorage Force	Rea	

L3

L4

h_{wall}

Lwall

3.83 ft

5.83 ft

7.00 ft 23.82 ft h_b1 Lo1 4.50 ft

1.50 ft

Force Transfer Around Openings Calculator

Project Information Code: 2018 Date: 10/17/2022 2018 WBC Designer: Client: JDA Centerline Project: Mithalia Wall Line: N - Main to Upper L1(ft) Lo1(ft) L2(ft) Lo2(ft) L3(ft) Lo3(ft) L4(ft) V (Ib) æ h_{open} (ft) h_{mail}(ft) h_{below} (ft) L_{wall}(ft) Shear Wall Calculation Variables 10157 lbf Opening 2 Adj. Factor Method 2bs/h Opening 1 Opening 3 1.00 ft 1.00 ft Wall Pier Aspect Ratio P1=h_o/L1= 0.26 h_a1 h_o1 h_a2 h_o2 1.00 ft Adj. Factor N/A L1 5.83 ft h,3 L2 3.83 ft 1.50 ft 1.50 ft h_o3 1.50 ft

h_b3

Lo3

4.50 ft

1.50 ft

 1. Hold-down forces: H = Vh_{wall}/L_{wall}
 2985 lbf
 6. Unit shear beside opening

 2. Unit shear above + below opening:
 First opening: va1 = H/(h_11+h_01) =
 543 plf

 Second opening: va2 = vb2 = H/(h_22+h_02) =
 543 plf
 $v2 = (V/L)[(T+L2+T3)/L2 =

 Third opening: va3 = vb3 = H/(h_33+h_b3) =
 543 plf
 <math>v3 = (V/L)[(T+L3+T5)/L3 =

 3. Total boundary force above + below openings
 First opening: 01 = va1 x (L01) =
 814 lbf

 Second opening: 01 = va1 x (L01) =
 814 lbf
 7. Resistance to corner forces$

Second	opening. 02 - vaz x (L02) -	014 101		
Third	Third opening: O3 = va3 x (Lo3) =			
4. Corner forces				
	F1 = O1(L1)/(L1+L2) =	491 lbf		
	F2 = O1(L2)/(L1+L2) =	323 lbf		
	F3 = O2(L2)/(L2+L3) =	407 lbf		
	F4 = O2(L3)/(L2+L3) =	407 lbf		
	F5 = O3(L3)/(L3+L4) =	323 lbf		
	F6 = O3(L4)/(L3+L4) =	491 lbf		
5. Tributary length of opening	s			
-	T1 = (L1*L01)/(L1+L2) =	0.91 ft		
	T2 = (L2*Lo1)/(L1+L2) =	0.59 ft		
	T3 = (L2*Lo2)/(L2+L3) =	0.75 ft		

T4 = (L3*Lo2)/(L2+L3) = T5 = (L3*Lo3)/(L3+L4) =

T6 = (L4*Lo3)/(L3+L4) =

h_b2 Lo2 4.50 ft

1.50 ft

0.75 ft 0.59 ft

0.91 ft

b. one shear beside opening					
v1 = (V/L)(L1+T1)/L1 =	493 plf				
v2 = (V/L)(T2+L2+T3)/L2 =	576 plf				
v3 = (V/L)(T4+L3+T5)/L3 =	576 plf				
v4 = (V/L)(T6+L4)/L4 =	493 plf				
Check v1*L1+v2*L2+v3*L3+v4*L4=V? 1015					
7. Resistance to corner forces					
R1 = v1*L1 =	2872 lbf				
R2 = v2*L2 =	2207 lbf				
R3 = v3*L3 =	2207 lbf				
R4 = v4*L4 =	2872 lbf				
8. Difference corner force + resistance					
R1-F1 =	2381 lbf				
R2-F2-F3 =	1477 lbf				
	1477 lhf				
R3-F4-F5 =	11/1/10/				

P2=h_/L2= P3=h_/L3=

P4=h_o/L4=

0.39

0.39

0.26

N/A

N/A

N/A

vc1 = (R1-F1)/L1 =	408 plf
vc2 = (R2-F2-F3)/L2 =	386 plf
vc3 = (R3-F4-F5)/L3 =	386 plf
vc4 = (R4-F6)/L4 =	408 plf

4-Term Story Drift % 0.007 %

 Req. Sheathing Capacity
 576 plf

 Req. Strap Force
 491 lbf

 Req. HD Force (H)
 2985 lbf

 Req. Shear Wall Anchorage Force (v_{msa})
 426 plf

3-Term Story Drift %

3-Term Deflection

0.155 in. 0.007 %

*The Design Summary assumes that the shear wall is designed as blocked.

v	9912 lbf		Opening 1	O	pening 2		Opening 3		Adj. Fa	tor Method =	2bs/h	
L1	3.42 ft	h _a 1	2.00 ft	h _a 2	2.00 ft	h _a 3	2.00 ft	-	Wall Pier Asp	pect Ratio	Adj. Factor	
L2	6.17 ft	h _o 1	5.00 ft	h _o 2	5.00 ft	h _o 3	5.00 ft	-	P1=h _o /L1=	1.46	N/A	-
L3	3.92 ft	h _b 1	3.00 ft	h _b 2	3.00 ft	h _b 3	3.00 ft		P2=h_/L2=	0.81	N/A	
L4	13.25 ft	Lo1	6.00 ft	Lo2	2.00 ft	Lo3	3.00 ft		P3=h_/L3=	1.28	N/A	
h _{wall}	10.00 ft								P4=h _o /L4=	0.38	N/A	
L _{wall}	37.76 ft											

1. Hold-down fo	orces: H = Vh _w	_{vall} /L _{wall}		2625	bf		6. Unit s	hear beside ope	ning		
2. Unit shear ab	ove + below	opening						v	1 = (V/L)(L1+T1)	/L1 =	427 plf
	First openir	ng: va1 = vb1 = H	/(h _a 1+h _b 1) =	525	olf			v2 =	(V/L)(T2+L2+T3)	/L2 =	479 plf
S	econd openir	ng: va2 = vb2 = H	/(h _a 2+h _b 2) =	525	olt			v3 =	(V/L)(T4+L3+T5)	/L3 =	360 plf
	Third openir	ng: va3 = vb3 = H,	/(h _a 3+h _b 3) =	525	DIT			v	4 = (V/L)(16+L4)	I/L4 =	308 plf
3 Total boundar	ry force aboy	ve + below openi	ngs					Lheck v1*L1+v2*	°L2+v3*L3+v4*L	4=V?	9912 lbf
. Total bounda	Firs	st opening: $O1 = 1$	/a1 x (l o1) =	3150	bf		7. Resist	ance to corner fo	orces		
	Secon	d opening: O2 = v	/a2 x (Lo2) =	1050	bf				R1 = v1	*L1 =	1459 lbf
	Thir	d opening: O3 = v	a3 x (Lo3) =	1575	bf				R2 = v2	*L2 =	2954 lbf
									R3 = v3	*L3 =	1413 lbf
1. Corner forces									R4 = v4	*L4 =	4086 lbf
		F1 = O1(L	1)/(L1+L2) =	1123	bf						
		F2 = O1(L	2)/(L1+L2) =	2027	bf		8. Differ	ence corner forc	e + resistance		
		F3 = O2(L	2)/(L2+L3) =	642	bf				R1	-F1 =	336 lbf
		F4 = O2(L	3)/(L2+L3) =	408	bf				R2-F2	-F3 =	285 lbf
		F5 = O3(L	3)/(L3+L4) =	360	bt				R3-F4	I-F5 =	645 lbf
		F6 = O3(L	4)/(L3+L4) =	1215	10				R4	I-F6 =	2870 lbf
. Tributary leng	gth of openin	gs					9. Unit s	hear in corner zo	ones		
		T1 = (L1*Lo	1)/(L1+L2) =	2.14	ft		-		vc1 = (R1-F1)	/L1 =	98 plf
		T2 = (L2*Lo	1)/(L1+L2) =	3.86	ft			,	vc2 = (R2-F2-F3)	/L2 =	46 plf
T3 = (L2*Lo2)/(L2+L3) =			1.22	ft	vc3 = (R3-F4-F5)/L3 =					165 plf	
T4 = (L3*Lo2)/(L2+L3) =			0.78	ft				vc4 = (R4-F6)	/L4 =	217 plf	
		T5 = (L3*Lo	3)/(L3+L4) =	0.68	ft						
		T6 = (L4*Lo	3)/(L3+L4) =	2.32	ft						
V (Ib)											
le 1	ne 2		le 3	ne 4		le 5	ne 6		ne 7	e 8	
-	i		-	=			-		-	-	
ľ	• • • •					- • • •	· · · ·	• • • •	← ← ← ←	· · · · ·	
+ heck Summarv:	of Shear Val	ues for Three Op	enings							H(10) [
ine 1: vc1(h _a 1+h	h _b 1)+v1(h _o 1)=	=H?						491	2134		2625 lbf
ine 2: va1(h _a 1+l	h _b 1)-vc1(h _a 1+	+h _b 1)-v1(h _o 1)=0?					262	5 491	2134		0
ine 3: vc2(h _a 1+h	h _b 1)+v2(h _o 1)-	va1(h _a 1+h _b 1)=0?					231	2394	2625		0
ine 4: va2(h _a 2+l	h _b 2)-v2(h _o 2)-v	vc2(h _a 2+h _b 2)=0?					262	5 2394	231		0
ine 5: va2(h _a 2+l	h _b 2)-vc3(h _a 2+	+h _b 2)-v3(h _o 2)=0?					262	5 823	1802		0
Line 6: va3(h _a 3+l	h _b 3)-v3(h _o 3)-ı	vc3(h _a 3+h _b 3)=0?					262	5 1802	823		0
ine 7: va3(h _a 3+l	h _b 3)-vc4(h _a 3+	+h _b 3)-v4(h _o 3)=0?					262	5 1083	1542		0
Line 8: vc4(h _a 3+h	h _b 3)+v4(h _o 3)=	=H?						1083	1542		2625 lbf
					Design Sum	marv*					
Req. Sheathi	ng Capacity	525 plf		4	Design Sum	0.406 in			3-Term Defle	ction	0.424 in.

Req. HD Force (H) 2625 lbf Req. Shear Wall Anchorage Force (v_{max}) 263 plf

*The Design Summary assumes that the shear wall is designed as blocked.

Project Information

Project Informa	tion	
Code:	2018 WBC	Date:
Designer:	ADI	
Client:	Centerline	
Project:	Mithalia	
Wall Line:	W - Upper to Roof	

V	7790 lbf		Opening 1	Adj. Facto	or Method =	2bs/h
L1	7.42 ft	h _a	2.00 ft	Wall Pier Asp	ect Ratio	Adj. Factor
L2	7.67 ft	ho	5.50 ft	P1=h _o /L1=	0.74	N/A
h _{wall}	10.50 ft	h _b	3.00 ft	P2=h _o /L2=	0.72	N/A
L _{wall}	17.09 ft	Lo1	2.00 ft			

1. Hold-down forces: H = Vh _{wall} /L _{wall}		4786 lbf	6. Unit shea	r beside openin	g		
				v1 = (V/L)(L1+T1)/L1	= 516 plf	
2. Unit shear above + below	opening			v2 = (V/L)(T2+L2)/L2	= 516 plf	
First oper	ning: va1 = vb1 = $H/(h_a+h_b)$ =	957 plf		Check	v1*L1+v2*L2=\	/? 7790 lbf OK	
3. Total boundary force abo	ve + below openings		7. Resistance	e to corner forc	es		
First	t opening: O1 = va1 x (Lo1) =	1914 lbf			R1 = v1*L1	= 3830 lbf	
					R2 = v2*L2	= 3960 lbf	
4. Corner forces							
	F1 = O1(L1)/(L1+L2) =	941 lbf	8. Difference	e corner force +	resistance		
	F2 = O1(L2)/(L1+L2) =	973 lbf			R1-F1	= 2889 lbf	
					R2-F2	= 2986 lbf	
5. Tributary length of openi	ngs						
	T1 = (L1*Lo1)/(L1+L2) =	0.98 ft	9. Unit shea	r in corner zone	S		
	T2 = (L2*Lo1)/(L1+L2) =	1.02 ft		v	c1 = (R1-F1)/L1	. = 389 plf	
				v	c2 = (R2-F2)/L2	= 389 plf	
	V (Ib)						
	e 1	le 2	e a	e 4			
	5	5	5	5			
		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	←			
	↓ H(Ib)		* max	i(lb)			
Summary of Shear Values for One Ope	ening						
$vc1(h_a+h_b)+v1(h_o)=H?$					1947	2839	4786 lbf
$va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$				4786	1947	2839	0
$va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$				4786	1947	2839	0
$vc2(h_a+h_b)+v2(h_o)=H?$					1947	2839	4786 lbf
		Design S	Summary*				
Req. Sheathing Capacity	957 plf	4-Term De	flection 0.348 in.			3-Term Deflection	0.373 in.
Req. Strap Force	973 lbf	4-Term Story	Drift % 0.011 %			3-Term Story Drift %	0.012 %
Req. HD Force (H)	4786 lbf			_			
eq. Shear Wall Anchorage Force (v _{max})	456 plf						

*The Design Summary assumes that the shear wall is designed as blocked.

Mithalia Residence

Roof			
Member Name	Results	Current Solution	Comments
1	Passed	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
2	Passed	3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL	
3	Passed	2 piece(s) 2 x 10 DF No.1	
4	Passed	2 piece(s) 2 x 6 DF No.1	
5	Passed	2 piece(s) 2 x 6 DF No.1	
6	Passed	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
7	Passed	2 piece(s) 1 3/4" x 5 1/2" 2.0E Microllam® LVL	
8	Passed	1 piece(s) 2 x 4 DF No.1	
9	Passed	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
10	Passed	2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL	
Upper			
Member Name	Results	Current Solution	Comments
Floor: Joist w/ Cant	Failed	1 piece(s) 20" TJI® 560 @ 24" OC	Right cantilever exceeds the maximum braced cantilever length of 7'.
Roof: Joist Cant	Failed	1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 24" OC	Right cantilever exceeds the maximum braced cantilever length of 7'.
20	Passed	2 piece(s) 2 x 8 DF No.1	
21	Passed	2 piece(s) 2 x 4 DF No.1	
22	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
23	Passed	2 piece(s) 2 x 8 DF No.1	
24	Passed	2 piece(s) 2 x 8 DF No.1	
25	Passed	2 piece(s) 2 x 4 DF No.1	
26	Passed	2 piece(s) 2 x 10 DF No.1	
27	Passed	3 piece(s) 2 x 10 DF No.1	
28	Failed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
28 (w_overstrength)	Failed	4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
29	Failed	3 piece(s) 1 3/4" x 20" 2.0E Microllam® LVL	An excessive uplift of -1609 lbs at support located at 19' 8" failed this product.
30	Failed	1 piece(s) 5 1/2" x 15" 24F-V8 DF Glulam	Right cantilever exceeds the maximum braced cantilever length of 7'.
31	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
32	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
33	Passed	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam	
34	Passed	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam	
35	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
35 (w_overstrength)	Failed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
36	Failed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Right cantilever exceeds the maximum braced cantilever length of 7'.

Main			
Member Name	Results	Current Solution	Comments
50	Passed	2 piece(s) 2 x 4 DF No.1	
51	Passed	2 piece(s) 2 x 8 DF No.1	
52	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
53	Passed	2 piece(s) 2 x 8 DF No.1	
54	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
55	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
56	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
57	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
58	Failed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Right cantilever exceeds the maximum braced cantilever length of 7'.
59	Failed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Right cantilever exceeds the maximum braced cantilever length of 7'.
59 (w_overstrength)	Failed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
60	Failed	3 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL	An excessive uplift of -2917 lbs at support located at 7' 8 1/2" failed this product.
60 (w_overstrength)	Failed	3 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL	Multiple Failures/Errors
61	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
62	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
63	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
64	Passed	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam	
65	Passed	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam	
66	Passed	1 piece(s) 3 1/2" x 15" 24F-V4 DF Glulam	
67	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
68	Failed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
69	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
69 (w_overstrength)	Failed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
70	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
71	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
33+34	Passed	1 piece(s) 6 x 6 DF No.1	
33+34+66+63	Passed	1 piece(s) 6 x 6 DF No.1	
Garage Joists	Passed	1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 16" OC	

Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4 File Name: Mithalia Residence

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4135 @ 1 1/2"	6563 (3.00")	Passed (63%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3048 @ 10 1/4"	5544	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	6213 @ 3' 3"	8182	Passed (76%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.122 @ 3' 3"	0.313	Passed (L/615)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.225 @ 3' 3"	0.417	Passed (L/334)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.89"	1893	2243	4135	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.89"	1893	2243	4135	Blocking
- Stud Wall - UP - Stud Wall - Stud							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 6" o/c	
Bottom Edge (Lu)	6' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	7.4		
1 - Uniform (PSF)	0 to 6' 6" (Top)	23'	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Roof, 2

3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7036 @ 5 1/2"	27563 (7.00")	Passed (26%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5303 @ 1' 4 1/4"	10611	Passed (50%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	16258 @ 5' 6"	19327	Passed (84%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.234 @ 5' 3 15/16"	0.492	Passed (L/504)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.434 @ 5' 3 15/16"	0.656	Passed (L/272)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column Cap - steel	7.00"	7.00"	1.79"	3240	3796	7036	Blocking
2 - Column Cap - steel	7.00"	7.00"	1.50"	1950	2249	4199	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 9" o/c	
Bottom Edge (Lu)	10' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 9"	N/A	14.2		
1 - Uniform (PSF)	0 to 6' 6 3/4" (Top)	23'	25.0	30.0	Default Load
2 - Point (lb)	6' 6 3/4" (Top)	N/A	1264	1517	50.6 sf tributary

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 3 2 piece(s) 2 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3406 @ 1 1/2"	5625 (3.00")	Passed (61%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2179 @ 1' 1/4"	3830	Passed (57%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	4409 @ 2' 10"	4510	Passed (98%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.038 @ 2' 10"	0.271	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.069 @ 2' 10"	0.361	Passed (L/939)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.82"	1559	1847	3406	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.82"	1559	1847	3406	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 11" o/c	
Bottom Edge (Lu)	5' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 8"	N/A	7.0		
1 - Uniform (PSF)	0 to 5' 8" (Top)	21' 8 3/4"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Roof, 4 2 piece(s) 2 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2010 @ 1 1/2"	5625 (3.00")	Passed (36%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1111 @ 8 1/2"	2277	Passed (49%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1350 @ 1' 7"	1884	Passed (72%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.016 @ 1' 7"	0.146	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.029 @ 1' 7"	0.194	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	1.50"	917	1093	2010	Blocking	
2 - Stud wall - DF	3.00"	3.00"	1.50"	917	1093	2010	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 2" o/c	
Bottom Edge (Lu)	3' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 2"	N/A	4.2		
1 - Uniform (PSF)	0 to 3' 2" (Top)	23'	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Roof, 5 2 piece(s) 2 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1586 @ 1 1/2"	5625 (3.00")	Passed (28%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	687 @ 8 1/2"	2277	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	803 @ 1' 3"	1884	Passed (43%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.006 @ 1' 3"	0.112	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.010 @ 1' 3"	0.150	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	1.50"	724	863	1586	Blocking	
2 - Stud wall - DF	3.00"	3.00"	1.50"	724	863	1586	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 6" o/c	
Bottom Edge (Lu)	2' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 6"	N/A	4.2		
1 - Uniform (PSF)	0 to 2' 6" (Top)	23'	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Roof, 6 2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4144 @ 1 1/2"	6563 (3.00")	Passed (63%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3057 @ 10 1/4"	5544	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	5673 @ 2' 3 3/4"	8182	Passed (69%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.080 @ 2' 9 13/16"	0.287	Passed (L/868)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.147 @ 2' 9 13/16"	0.383	Passed (L/470)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports					
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories			
1 - Stud wall - DF	3.00"	3.00"	1.89"	1896	2248	4144	Blocking			
2 - Stud wall - DF	3.00"	3.00"	1.50"	742	864	1607	Blocking			
· Placking Papale are accumed to carry no load	- Blacking Danale are accurred to gave up lands applied directly above them and the full land is applied to the member being designed									

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' o/c	
Bottom Edge (Lu)	6' o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 6'	N/A	7.4		
1 - Uniform (PSF)	0 to 2' 3 3/4" (Top)	23'	25.0	30.0	Default Load
2 - Point (lb)	2' 3 3/4" (Top)	N/A	1264	1517	50.6 sf tributary

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Roof, 7 2 piece(s) 1 3/4" x 5 1/2" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1458 @ 1 1/2"	6563 (3.00")	Passed (22%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1251 @ 8 1/2"	4206	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	3464 @ 5'	4889	Passed (71%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.338 @ 5'	0.488	Passed (L/346)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.631 @ 5'	0.650	Passed (L/185)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	678	780	1458	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	678	780	1458	Blocking
- Blocking Danole are accurated to earny no load	a applied dire	athy above the	m and the ful	Lload is appli	ad to the mai	nhar haina d	anianad

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' o/c	
Bottom Edge (Lu)	10' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10'	N/A	5.6		
1 - Uniform (PSF)	0 to 10' (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 9 / 66

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

	-				
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	287 @ 1 1/2"	2813 (3.00")	Passed (10%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	132 @ 6 1/2"	725	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	110 @ 1'	440	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.004 @ 1'	0.087	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.007 @ 1'	0.117	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	131	156	287	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	131	156	287	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' o/c	
Bottom Edge (Lu)	2' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2'	N/A	1.3		
1 - Uniform (PSF)	0 to 2' (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabd@yahoo.com	

Roof, 9 2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1760 @ 1 1/2"	6563 (3.00")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1509 @ 10 1/4"	5544	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	5061 @ 6'	8182	Passed (62%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.313 @ 6'	0.587	Passed (L/450)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.589 @ 6'	0.783	Passed (L/239)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	824	936	1760	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	824	936	1760	Blocking
- Blacking Danals are assumed to save use lands applied directly shave them and the full land is applied to the member being designed							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' o/c	
Bottom Edge (Lu)	12' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12'	N/A	7.4		
1 - Uniform (PSF)	0 to 12' (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Roof, 10 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2363 @ 1 1/2"	6563 (3.00")	Passed (36%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2061 @ 1' 1/4"	7074	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	9157 @ 8'	12884	Passed (71%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.485 @ 8'	0.788	Passed (L/390)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.918 @ 8'	1.050	Passed (L/206)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	1115	1248	2363	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	1115	1248	2363	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 9" o/c	
Bottom Edge (Lu)	16' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16'	N/A	9.4		
1 - Uniform (PSF)	0 to 16' (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Upper, Floor: Joist w/ Cant 1 piece(s) 20" TJI ® 560 @ 24" OC

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1516 @ 2 1/2"	1725 (3.50")	Passed (88%)	1.00	1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	1478 @ 3 1/2"	3345	Passed (44%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	8531 @ 11' 8"	16165	Passed (53%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.283 @ 11' 11 7/8"	0.589	Passed (L/998)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.435 @ 11' 10 1/2"	1.178	Passed (L/650)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	42	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	2.71"	557	959	-84	1516	Blocking
2 - Stud wall - DF	5.50"	5.50"	3.50"	880	961	559	2021	Blocking
Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' o/c	
Bottom Edge (Lu)	13' 11" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 24'	24"	25.0	40.0		Default Load
2 - Uniform (PSF)	24' to 31' 11"	24"	15.0	-	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

Upper, Roof: Joist Cant

1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 24" OC

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	917 @ 15' 9 1/4"	6016 (5.50")	Passed (15%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	636 @ 16' 11 1/4"	4302	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-3045 @ 15' 9 1/4"	7237	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.514 @ 24'	0.823	Passed (2L/384)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.770 @ 24'	1.097	Passed (2L/256)		1.0 D + 1.0 S (All Spans)

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

· Allowed moment does not reflect the adjustment for the beam stability factor.

· A 4% increase in the moment capacity has been added to account for repetitive member usage.

• Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	-66	-131	-197	See note 1
2 - Stud wall - DF	5.50"	5.50"	1.50"	306	611	917	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	23' 9" o/c				
Bottom Edge (Lu)					
Maximum allowable bracing intervals based on applied load.					

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	IUS1.81/9.5	2.00"	N/A	8-10dx1.5	2-10dx1.5		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	16' to 24'	24"	15.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 14 / 66

Upper, 20 2 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2222 @ 0	2813 (1.50")	Passed (79%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1273 @ 8 3/4"	2610	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1898 @ 1' 8 1/2"	2628	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.015 @ 1' 8 1/2"	0.085	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.025 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.50"	838	1384	-72	2222	Blocking
2 - Stud wall - DF	1.50"	1.50"	1.50"	838	1384	-72	2222	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	3' 5" o/c				
Bottom Edge (Lu)	3' 5" o/c				
Maximum allowable bracing intervals based on applied load					

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	5.5			
1 - Uniform (PSF)	0 to 3' 5" (Top)	8' 3 1/8"	25.0	40.0	-	Default Load
2 - Uniform (PLF)	0 to 3' 5" (Front)	N/A	278.5	479.5	-42.0	Linked from: Floor: Joist w/ Cant, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233
iaviddabdi@vahoo.com

Upper, 21 2 piece(s) 2 x 4 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	385 @ 0	2813 (1.50")	Passed (14%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	160 @ 5"	1260	Passed (13%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	137 @ 8 9/16"	766	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 8 9/16"	0.036	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 8 9/16"	0.071	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.50"	149	236	385	Blocking
2 - Stud wall - DF	1.50"	1.50"	1.50"	149	236	385	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 5" o/c	
Bottom Edge (Lu)	1' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 1' 5 1/8"	N/A	2.7		
1 - Uniform (PSF)	0 to 1' 5 1/8" (Top)	8' 3 1/8"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com	

Upper, 22 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10892 @ 3"	14766 (4.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	8638 @ 1' 8 1/2"	15960	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	42277 @ 8' 3 1/16"	46671	Passed (91%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.370 @ 8' 3 1/16"	0.400	Passed (L/520)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.602 @ 8' 3 1/16"	0.801	Passed (L/319)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	4.50"	4.50"	3.32"	4206	6686	-347	10892	Blocking
2 - Stud wall - DF	4.50"	4.50"	3.26"	4136	6566	-336	10703	Blocking
 Blocking Panels are assumed to carry no load 	s annlied dire	ctly above the	m and the ful	l load is annli	ed to the mer	nher heina de	signed	

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 8" o/c	
Bottom Edge (Lu)	16' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 6 1/8"	N/A	24.5			
1 - Uniform (PSF)	0 to 16' 6 1/8" (Top)	8' 3 1/8"	25.0	40.0	-	Default Load
2 - Uniform (PLF)	0 to 16' 3 1/8" (Front)	N/A	278.5	479.5	-42.0	Linked from: Floor: Joist w/ Cant, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Upper, 23 2 piece(s) 2 x 8 DF No.1

Overall Length: 5' 10 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1592 @ 3 3/4"	2813 (1.50")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1227 @ 11"	2610	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2098 @ 2' 11 3/8"	2628	Passed (80%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.039 @ 2' 11 3/8"	0.132	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.065 @ 2' 11 3/8"	0.264	Passed (L/977)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories		
1 - Hanger on 7 1/4" DF beam	3.75"	Hanger ¹	1.50"	693	1086	1779	See note 1		
2 - Hanger on 7 1/4" DF beam	3.75"	Hanger ¹	1.50"	693	1086	1779	See note 1		
• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger									

¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	5' 3" o/c						
Bottom Edge (Lu)	5' 3" o/c						
Maximum allowable bracing intervals based on applied load							

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
1 - Top Mount Hanger	BA28-2	3.00"	6-10dx1.5	4-10dx1.5	2-10dx1.5					
2 - Face Mount Hanger	HUS28-2	2.00"	N/A	6-16d	6-16d					

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 3/4" to 5' 7"	N/A	5.5		
1 - Uniform (PSF)	0 to 5' 10 3/4" (Top)	9' 2 1/2"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 18 / 66

Upper, 24 2 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2706 @ 0	2813 (1.50")	Passed (96%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2178 @ 8 3/4"	3002	Passed (73%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2091 @ 10 1/2"	3022	Passed (69%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.003 @ 10 1/2"	0.058	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.006 @ 10 1/2"	0.087	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	1338	420	1369	2706	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	1338	420	1369	2706	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 9" o/c	
Bottom Edge (Lu)	1' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 1' 9"	N/A	5.5			
1 - Uniform (PLF)	0 to 1' 9"	N/A	440.0	480.5	279.5	Linked from: Floor: Joist w/ Cant, Support 2
2 - Point (lb)	10 1/2"	N/A	1896	-	2248	Linked from: 6, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Note
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	

Upper, 25 2 piece(s) 2 x 4 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1937 @ 0	2813 (1.50")	Passed (69%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1014 @ 5"	1449	Passed (70%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	847 @ 10 1/2"	880	Passed (96%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.013 @ 10 1/2"	0.058	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.026 @ 10 1/2"	0.087	Passed (L/819)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	985	420	848	1937	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	985	420	848	1937	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 9" o/c	
Bottom Edge (Lu)	1' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 1' 9"	N/A	2.7			
1 - Uniform (PLF)	0 to 1' 9"	N/A	440.0	480.5	279.5	Linked from: Floor: Joist w/ Cant, Support 2
2 - Uniform (PSF)	0 to 1' 9"	23'	25.0	-	30.0	
3 - Uniform (PSF)	0 to 1' 9"	9'	12.0	-	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233
iaviddabdi@vaboo.com

Upper, 26 2 piece(s) 2 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2880 @ 1 1/2"	5625 (3.00")	Passed (51%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1682 @ 4' 7 3/4"	3330	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3398 @ 2' 10"	3922	Passed (87%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.033 @ 2' 10 1/16"	0.181	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.058 @ 2' 10 1/16"	0.271	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.54"	1266	1361	792	2880	None
2 - Trimmer - DF	3.00"	3.00"	1.50"	1157	1242	722	2631	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 8" o/c	
Bottom Edge (Lu)	5' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 8"	N/A	7.0			
1 - Uniform (PLF)	0 to 5' 5"	N/A	440.0	480.5	279.5	Linked from: Floor: Joist w/ Cant, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Upper, 27 3 piece(s) 2 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2568 @ 1 1/2"	8438 (3.00")	Passed (30%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1791 @ 1' 1/4"	4995	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	4018 @ 3' 4 1/2"	5882	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.037 @ 3' 4 1/2"	0.217	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.061 @ 3' 4 1/2"	0.325	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	1009	1558	2568	None
2 - Trimmer - DF	3.00"	3.00"	1.50"	1009	1558	2568	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 9" o/c	
Bottom Edge (Lu)	6' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 9"	N/A	10.6		
1 - Uniform (PSF)	0 to 6' 9"	11' 6 1/2"	25.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Upper, 28 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6326 @ 23' 6 1/2"	6326 (1.61")	Passed (100%)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5345 @ 1' 9 1/2"	15960	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	33357 @ 11' 7 13/16"	46671	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	1.005 @ 11' 3 11/16"	0.774	Failed (L/277)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	1.364 @ 11' 5 1/16"	1.160	Failed (L/204)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

-529 lbs uplift at support located at 4". Strapping or other restraint may be required.

• -919 lbs uplift at support located at 23' 6 1/2". Strapping or other restraint may be required.

	Bearing Length			Loads to Su				
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	2.16"	2705	3701	3074/-3074	7094/-529	Blocking
2 - Hanger on 16" LVL beam	3.50"	Hanger ¹	1.61"	2054	3688	3074/-3074	6434/-919	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	13' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	HGUS5.50/12	4.00"	N/A	56-10d	20-10d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 23' 6 1/2"	N/A	24.5			
1 - Uniform (PSF)	0 to 23' 10" (Top)	4' 6"	25.0	60.0	-	Default Load
2 - Uniform (PSF)	0 to 23' 10" (Top)	1'	25.0	40.0	-	Default Load
3 - Uniform (PSF)	0 to 7' 6 1/2" (Top)	10'	12.0	-	-	Default Load
4 - Point (Ib)	3" (Front)	N/A	-	-	9898	
5 - Point (Ib)	7' 6 1/2" (Front)	N/A	-	-	-9898	

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 23 / 66

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 24 / 66

Upper, 28 (w_overstrength) 4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

An excessive uplift of -3699 lbs at support located at 4" failed this product.

An excessive uplift of -4090 lbs at support located at 23' 6 1/2" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8842 @ 23' 6 1/2"	8842 (1.68")	Passed (100%)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	14224 @ 1' 9 1/2"	34048	Passed (42%)	1.60	1.0 D - 0.7 E (All Spans)
Moment (Ft-lbs)	98041 @ 7' 6 1/2"	99565	Passed (98%)	1.60	1.0 D - 0.7 E (All Spans)
Live Load Defl. (in)	-1.410 @ 10' 9 7/8"	0.774	Failed (L/197)		1.0 D + 0.7 E (All Spans)
Total Load Defl. (in)	1.689 @ 10' 11 9/16"	1.160	Failed (L/165)		1.0 D - 0.7 E (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

· Member should be side-loaded from both sides of the member or braced to prevent rotation.

	В	Bearing Length			Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	2.20"	2802	3701	7686/-7686	9612/- 3699	Blocking
2 - Hanger on 16" LVL beam	3.50"	Hanger ¹	1.68"	2149	3688	7686/-7686	8950/- 4090	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 5" o/c	
Bottom Edge (Lu)	6' 1" o/c	
•Maximum allowable bracing interv	als based on applied load	

als based on applie

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Top Mount Hanger	EGQ7.25-SDS3 H=15.938	6.00"	N/A	28-SDS25300	12-SDS25300	

Weyerhaeuser

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 23' 6 1/2"	N/A	32.7			
1 - Uniform (PSF)	0 to 23' 10" (Top)	4' 6"	25.0	60.0	-	Default Load
2 - Uniform (PSF)	0 to 23' 10" (Top)	1'	25.0	40.0	-	Default Load
3 - Uniform (PSF)	0 to 7' 6 1/2" (Top)	10'	12.0	-	-	Default Load
4 - Point (Ib)	3" (Front)	N/A	-	-	24745	
5 - Point (Ib)	7' 6 1/2" (Front)	N/A	-	-	-24745	

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 26 / 66

Upper, 29 3 piece(s) 1 3/4" x 20" 2.0E Microllam® LVL

An excessive uplift of -1609 lbs at support located at 19' 8" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	17841 @ 6' 10 3/4"	18047 (5.50")	Passed (99%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	7315 @ 5'	19950	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	-50453 @ 6' 10 3/4"	81355	Passed (62%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Live Load Defl. (in)	0.278 @ 0	0.460	Passed (2L/594)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans) [1]
Total Load Defl. (in)	0.594 @ 0	0.690	Passed (2L/278)		1.0 D - 0.525 E + 0.75 L + 0.75 S (Alt Spans) [8]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

· Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Lengt	:h	Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	5.44"	10227	6066	3095	1415/-1415	17841	Blocking
2 - Stud wall - SPF	5.50"	4.25"	1.50"	-80	2220/-953	-1085	496/-496	2140/- 1870	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	19' 11" o/c	
Bottom Edge (Lu)	7' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 19' 10 3/4"	N/A	30.6				
1 - Uniform (PSF)	0 to 20' (Top)	8' 3 1/8"	25.0	40.0	-	-	Default Load
2 - Point (Ib)	0 (Top)	N/A	742	-	864	-	Linked from: 6, Support 2
3 - Uniform (PSF)	0 to 20' (Top)	9'	12.0	-	-	-	Default Load
4 - Point (Ib)	0 (Front)	N/A	2505	690	1146	919/-919	Linked from: 35, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 27 / 66

Upper, 30 1 piece(s) 5 1/2" x 15" 24F-V8 DF Glulam

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	14112 @ 17' 9 1/4"	18906 (5.50")	Passed (75%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5128 @ 16' 3 1/2"	14575	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	22619 @ 8' 7"	41035	Passed (55%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-17449 @ 11' 3 1/2"	62577	Passed (28%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	0.610 @ 27'	0.615	Passed (2L/362)		0.6 D - 0.7 E (All Spans)
Total Load Defl. (in)	0.630 @ 9' 2 1/4"	0.872	Passed (L/332)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Upward deflection on right cantilever exceeds overhang deflection criteria.

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.99 that was calculated using length L = 16' 5 15/16".

• Critical negative moment adjusted by a volume factor of 0.95 that was calculated using length L = 26' 8".

• Upward deflection on right cantilever exceeds 0.4".

• -425 lbs uplift at support located at 4". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.89"	2715	2991	-	2935/-2935	6500/-425	Blocking
2 - Stud wall - DF	5.50"	5.50"	4.11"	7055	3822	2112	4965/-4965	14112	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	27' o/c	
Bottom Edge (Lu)	27' o/c	
M 1 1 1 1 1 1 1		

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 27'	N/A	20.0				
1 - Uniform (PSF)	0 to 18' (Top)	8' 3 1/8"	25.0	40.0	-	-	Default Load
2 - Point (lb)	18' (Top)	N/A	742	-	864	-	Linked from: 6, Support 2
3 - Point (lb)	18' (Front)	N/A	1115	-	1248	-	Linked from: 10, Support 1
4 - Uniform (PSF)	0 to 27' (Top)	9'	12.0	-	-	-	Default Load
5 - Point (lb)	11' 3 1/2" (Top)	N/A	-	-	-	7900	
6 - Point (lb)	18' (Front)	N/A	739	865	-	-	Linked from: 31, Support 1

 ForteWEB Software Operator
 Job Notes

 Javid Abdi
 Javid Abdi

 Atlas Consulting Engineers
 (206) 427-7233

 javiddabdi@yahoo.com
 Javid Abdi

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 28 / 66

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 29 / 66

Upper, 31 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1439 @ 3 1/2"	1969 (1.50")	Passed (73%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	672 @ 1' 7 1/2"	5320	Passed (13%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1799 @ 2' 9 1/2"	15557	Passed (12%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 2' 9 1/2"	0.167	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.014 @ 2' 9 1/2"	0.250	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.50"	739	865	1605	See note 1
2 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.50"	739	865	1605	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' o/c	
Bottom Edge (Lu)	5' o/c	
M	1 1 P 11 1	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	ITS1.81/16	2.00"	4-10dx1.5	4-10dx1.5	4-10dx1.5	
2 - Face Mount Hanger	IUS1.81/14	2.00"	N/A	14-10d	2-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 5' 3 1/2"	N/A	8.2		
1 - Uniform (PSF)	0 to 5' 7" (Top)	4' 6"	25.0	60.0	Default Load
2 - Uniform (PSF)	0 to 5' 7" (Top)	1'	25.0	40.0	Default Load
3 - Uniform (PSF)	0 to 5' 7" (Top)	10'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 30 / 66

Upper, 32 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5452 @ 4' 4 1/2"	7875 (3.00")	Passed (69%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3880 @ 2' 11"	12236	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6423 @ 3' 1 1/4"	35781	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.009 @ 3' 1 1/4"	0.142	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.019 @ 3' 1 1/4"	0.213	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	1602	1039	1046	3166	None
2 - Trimmer - DF	3.00"	3.00"	2.08"	2834	1039	2451	5452	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 6" o/c	
Bottom Edge (Lu)	4' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 6"	N/A	16.3			
1 - Uniform (PSF)	0 to 4' 6"	11' 6 1/2"	25.0	40.0	-	
2 - Point (lb)	3' 1 1/4"	N/A	1950	-	2249	Linked from: 2, Support 2
3 - Point (lb)	3' 1 1/4"	N/A	1115	-	1248	Linked from: 10, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233
iaviddabdi@vahoo.com

Upper, 33 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4789 @ 23' 9 1/2"	15194 (4.25")	Passed (32%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4143 @ 1' 10"	14575	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	27396 @ 12' 1 1/2"	39636	Passed (69%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.647 @ 12' 1 1/2"	0.778	Passed (L/433)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.964 @ 12' 1 1/2"	1.167	Passed (L/290)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length L = 23' 4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	5.75"	1.50"	1605	3274	4879	1 1/4" Rim Board
2 - Column Cap - steel	5.50"	4.25"	1.50"	1589	3240	4829	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	23' 11" o/c					
Bottom Edge (Lu)	23' 11" o/c					
Navimum allowable bracing intervals based on applied load						

im allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 24' 1/4"	N/A	20.0		
1 - Uniform (PSF)	0 to 24' 1 1/2" (Top)	4' 6"	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Upper, 34 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3363 @ 16' 8 1/2"	15194 (4.25")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2717 @ 1' 10"	14575	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	13287 @ 8' 7"	41096	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.152 @ 8' 7"	0.542	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.227 @ 8' 7"	0.813	Passed (L/860)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	5.75"	1.50"	1136	2318	3453	1 1/4" Rim Board
2 - Column Cap - steel	5.50"	4.25"	1.50"	1119	2284	3403	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	16' 10" o/c					
Bottom Edge (Lu)	16' 10" o/c					
Maximum allowable bracing intervals based on applied load						

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 16' 11 1/4"	N/A	20.0		
1 - Uniform (PSF)	0 to 17' 1/2" (Top)	4' 6"	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Upper, 35 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	4804 @ 1 1/2"	6563 (3.00")	Passed (73%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	
Shear (lbs)	4433 @ 1' 7"	17024	Passed (26%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	
Moment (Ft-lbs)	10102 @ 7' 7 1/16"	31114	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.177 @ 7' 6 11/16"	0.546	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	
Total Load Defl. (in)	0.343 @ 7' 9 15/16"	0.819	Passed (L/572)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -976 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.20"	2089	665	726	3185/-3185	4804/-976	Blocking
2 - Hanger on 16" LVL beam	5.25"	Hanger ¹	1.50"	2505	690	1146	919/-919	4364	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	11' 4" o/c				
Bottom Edge (Lu)	16' 6" o/c				
Maximum allowable bracing intervals based on applied load					

racing intervals based on applied load

Connector: Simpson Strong-Tie											
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories					
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A						

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	16.3				
1 - Uniform (PSF)	0 to 16' 11 1/4" (Top)	2'	25.0	40.0	-	-	Default Load
2 - Uniform (PSF)	0 to 16' 11 1/4" (Top)	9'	12.0	-	-	-	Default Load
3 - Point (lb)	16' 11 1/4" (Top)	N/A	824	-	936	-	Linked from: 9, Support 1
4 - Point (lb)	3' 9 1/2" (Top)	N/A	824	-	936	-	Linked from: 9, Support 2
5 - Point (lb)	3' 9 1/2" (Front)	N/A	-	-	-	4104	

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com	

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 34 / 66

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 35 / 66

Upper, 35 (w_overstrength)

2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Support 1 failed reaction check due to insufficient bearing capacity.

An excessive uplift of -4321 lbs at support located at 1 1/2" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	3
Member Reaction (lbs)	7662 @ 1 1/2"	6563 (3.00")	Failed (117%)		1.0 D + 0.7 E (All Spans)] [
Shear (lbs)	7386 @ 1' 7"	17024	Passed (43%)	1.60	1.0 D + 0.7 E (All Spans)] 6
Moment (Ft-lbs)	26844 @ 3' 9 1/2"	49783	Passed (54%)	1.60	1.0 D + 0.7 E (All Spans)] [
Live Load Defl. (in)	-0.334 @ 7' 3 9/16"	0.546	Passed (L/589)		0.6 D - 0.7 E (All Spans)	
Total Load Defl. (in)	0.499 @ 7' 6 13/16"	0.819	Passed (L/394)		1.0 D + 0.7 E (All Spans)	

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	3.50"	2089	665	726	7963/-7963	7662/- 4321	Blocking
2 - Hanger on 16" LVL beam	5.25"	Hanger ¹	1.50"	2505	690	1146	2297/-2297	5088/-105	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

 \bullet $\ensuremath{^1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	6' 4" o/c						
Bottom Edge (Lu) 10' 11" o/c							
Maximum allowable bracing intervals based on applied load.							

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
Defends and the base of the base of the base of all second se								

Weyerhaeuser

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	16.3				
1 - Uniform (PSF)	0 to 16' 11 1/4" (Top)	2'	25.0	40.0	-	-	Default Load
2 - Uniform (PSF)	0 to 16' 11 1/4" (Top)	9'	12.0	-	-	-	Default Load
3 - Point (lb)	16' 11 1/4" (Top)	N/A	824	-	936	-	Linked from: 9, Support 1
4 - Point (Ib)	3' 9 1/2" (Top)	N/A	824	-	936	-	Linked from: 9, Support 2
5 - Point (lb)	3' 9 1/2" (Front)	N/A	-	-	-	10260	

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 37 / 66

Upper, 36 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3384 @ 1 1/2"	6563 (3.00")	Passed (52%)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	3377 @ 19' 2 3/4"	12236	Passed (28%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	14458 @ 9' 11 7/16"	31114	Passed (46%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.181 @ 29'	0.548	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.537 @ 10' 2 5/16"	1.033	Passed (L/462)		1.0 D + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

٠	Deflection	criteria:	LL	(L/360)	and	ΤL	(L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Upward deflection on right cantilever exceeds 0.4".

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.55"	2143	836	818	3384	Blocking
2 - Stud wall - DF	5.25"	5.25"	2.57"	3193	844	2394	5622	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 1" o/c	
Bottom Edge (Lu)	24' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 29'	N/A	16.3			
1 - Uniform (PSF)	0 to 21' (Top)	2'	25.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 21' (Top)	9'	12.0	-	-	Default Load
3 - Uniform (PSF)	21' to 29' (Top)	2'	15.0	-	30.0	Default Load
4 - Uniform (PSF)	0 to 29' (Top)	3'	15.0	-	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 38 / 66

Main, 50 2 piece(s) 2 x 4 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	357 @ 0	2813 (1.50")	Passed (13%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	149 @ 5"	1260	Passed (12%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	128 @ 8 9/16"	766	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 8 9/16"	0.036	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 8 9/16"	0.071	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.50"	139	219	357	Blocking
2 - Stud wall - DF	1.50"	1.50"	1.50"	139	219	357	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 5" o/c	
Bottom Edge (Lu)	1' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 1' 5 1/8"	N/A	2.7		
1 - Uniform (PSF)	0 to 1' 5 1/8" (Top)	7' 8"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB So	oftware Operator	Job Notes	
Javid Abdi Atlas Consultir (206) 427-723 javiddabdi@ya	ng Engineers 13 ahoo.com		

Main, 51 2 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2193 @ 0	2813 (1.50")	Passed (78%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1257 @ 8 3/4"	2610	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1873 @ 1' 8 1/2"	2628	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.015 @ 1' 8 1/2"	0.085	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.024 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.50"	849	1344	2193	Blocking
2 - Stud wall - DF	1.50"	1.50"	1.50"	849	1344	2193	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 5" o/c	
Bottom Edge (Lu)	3' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 5" (Top)	19' 8"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabd@yahoo.com	

Main, 52 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

6' 2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2528 @ 1 1/2"	3281 (3.00")	Passed (77%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1327 @ 1' 7"	5320	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3903 @ 3' 4"	15557	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.025 @ 3' 4"	0.160	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.040 @ 3' 4"	0.321	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

0

2

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

1

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.31"	989	1539	2528	Blocking
2 - Stud wall - DF	3.00"	3.00"	2.31"	989	1539	2528	Blocking
Blocking Danels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 8" o/c	
Bottom Edge (Lu)	6' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 8"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 8" (Top)	11' 6 1/2"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 41 / 66

Main, 53 2 piece(s) 2 x 8 DF No.1

Overall Length: 4' 2 1/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1267 @ 1 1/2"	5625 (3.00")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	749 @ 10 1/4"	2610	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1170 @ 2' 1 1/16"	2628	Passed (45%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.012 @ 2' 1 1/16"	0.098	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.020 @ 2' 1 1/16"	0.196	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	494	773	1267	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	494	773	1267	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 2" o/c	
Bottom Edge (Lu)	4' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 2 1/8"	N/A	5.5		
1 - Uniform (PSF)	0 to 4' 2 1/8" (Top)	9' 3"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Main, 54 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1155 @ 3 1/2"	1969 (1.50")	Passed (59%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	343 @ 1' 7 1/2"	5320	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1095 @ 2' 2 1/4"	15557	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.004 @ 2' 2 1/4"	0.095	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.007 @ 2' 2 1/4"	0.190	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.50"	521	809	1331	See note 1
2 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.50"	521	809	1331	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 10" o/c					
Bottom Edge (Lu)	3' 10" o/c					
Mandanian allowable based as said and an explicit land						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HUCQ1.81/11-SDS	3.00"	N/A	10-SDS25134	4-SDS25134	
2 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10d	2-10dx1.5	

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 4' 1"	N/A	8.2		
1 - Uniform (PSF)	0 to 4' 4 1/2" (Top)	9' 3"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Jo

 Javid Abdi
 Javid Abdi

 Atlas Consulting Engineers
 (206) 427-7233

 javiddabdi@yahoo.com
 Javid Abdi

Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 43 / 66

Main, 55 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 13' 8 1/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2674 @ 11' 7 1/2"	6016 (5.50")	Passed (44%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1399 @ 13' 2 1/4"	5320	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	-3037 @ 11' 7 1/2"	15557	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.032 @ 13' 8 1/4"	0.200	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.042 @ 13' 8 1/4"	0.206	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (0.2") and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	1.50"	238	470/-160	708	Blocking	
2 - Stud wall - DF	5.50"	5.50"	2.44"	1080	1594	2674	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Bracing Intervals	Comments
13' 8" o/c	
13' 8" o/c	
	13' 8" o/c 13' 8" o/c

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 13' 8 1/4"	N/A	8.2		
1 - Uniform (PSF)	0 to 13' 8 1/4" (Top)	2'	25.0	40.0	Default Load
2 - Point (lb)	13' 8 1/4" (Front)	N/A	521	809	Linked from: 54, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Main, 56 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 21' 1 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1903 @ 4"	12031 (5.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1641 @ 1' 5 1/2"	7420	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	9428 @ 10' 6 3/4"	16800	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.521 @ 10' 6 3/4"	0.511	Passed (L/471)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.783 @ 10' 6 3/4"	1.023	Passed (L/314)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 20' 5 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	636	1268	1903	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	636	1268	1903	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	21' 2" o/c				
Bottom Edge (Lu) 21' 2" o/c					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 21' 1 1/2"	N/A	10.2		
1 - Uniform (PSF)	0 to 21' 1 1/2" (Top)	2'	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 45 / 66

PASSED

Main, 57 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 9' 10 1/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	832 @ 9' 6 3/4"	3413 (1.50")	Passed (24%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	651 @ 8' 6 3/4"	7420	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1919 @ 4' 11 3/8"	16800	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.022 @ 4' 11 3/8"	0.231	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.032 @ 4' 11.3/8"	0 461	Passed (1/999+)		$10D \pm 10I$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 2 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	5.50"	5.50"	1.50"	298	594	892	Blocking
2 - Hanger on 12" LVL beam	3.50"	Hanger ¹	1.50"	292	589	881	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 7" o/c	
Bottom Edge (Lu)	9' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 6 3/4"	N/A	10.2		
1 - Uniform (PSF)	0 to 9' 10 1/4" (Top)	2'	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Javid Abdi
 Atlas Consulting Engineers

 (206) 427-7233
 javiddabdi@yahoo.com

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 46 / 66

Main, 58

3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7634 @ 23' 9 1/4"	18047 (5.50")	Passed (42%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3810 @ 22' 2 1/2"	15960	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-19032 @ 23' 9 1/4"	35003	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.634 @ 34'	0.682	Passed (2L/388)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.681 @ 34'	1.023	Passed (2L/360)		1.0 D + 1.0 L (Alt Spans)

Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	1133	1807/-511	2940	Blocking
2 - Stud wall - DF	5.50"	5.50"	2.33"	3075	4559	7634	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	27' 2" o/c	
Bottom Edge (Lu)	20' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 34'	N/A	24.5		
1 - Uniform (PSF)	0 to 28' (Top)	2'	25.0	40.0	Default Load
2 - Point (lb)	19' 9" (Front)	N/A	521	809	Linked from: 54, Support 1
3 - Point (lb)	27' 1" (Front)	N/A	292	589	Linked from: 57, Support 2
4 - Point (lb)	30' 11" (Front)	N/A	292	589	Linked from: 57, Support 2
5 - Uniform (PSF)	28' to 34' (Top)	2'	25.0	60.0	Default Load
6 - Point (lb)	5' 2 1/4" (Front)	N/A	570	908	Linked from: 62, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes		

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 47 / 66

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Main, 59 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4052 @ 23' 9 1/4"	12031 (5.50")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4925 @ 14' 3 1/2"	17024	Passed (29%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	-9391 @ 23' 9 1/4"	23336	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.473 @ 34'	0.682	Passed (2L/520)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.385 @ 34'	1.023	Passed (2L/638)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

•	Deflection	criteria:	LL	(L/360)	and	ΤL	(L/240).	

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

· Upward deflection on right cantilever exceeds 0.4".

- 229 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	813	956/-250	1024/-1024	2068/-229	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.85"	1798	2255	1024/-1024	4052	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 6" o/c	
Bottom Edge (Lu)	20' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 34'	N/A	16.3			
1 - Uniform (PSF)	0 to 28' (Top)	2'	25.0	40.0	-	Default Load
2 - Uniform (PSF)	28' to 34' (Top)	2'	25.0	60.0	-	Default Load
3 - Uniform (PSF)	11' to 14' 3 1/2" (Top)	9'	12.0	-	-	Default Load
4 - Point (lb)	11' (Top)	N/A	-	-	7359	Default Load
5 - Point (lb)	14' 3 1/2" (Top)	N/A	-	-	-7359	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 48 / 66

Main, 59 (w_overstrength)

2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Right cantilever exceeds the maximum braced cantilever length of 7'.

An excessive uplift of -1305 lbs at support located at 1 1/2" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2875 @ 1 1/2"	6563 (3.00")	Passed (44%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	11576 @ 14' 3 1/2"	17024	Passed (68%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	24326 @ 11'	49783	Passed (49%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.473 @ 34'	0.682	Passed (2L/520)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.534 @ 9' 6 7/16"	1.182	Passed (L/531)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Upward deflection on right cantilever exceeds 0.4".

- -714 lbs uplift at support located at 23' 9 1/4". Strapping or other restraint may be required.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	813	956/-250	2561/-2561	2875/- 1305	Blocking
2 - Stud wall - DF	5.50"	5.50"	2.21"	1798	2255	2561/-2561	4833/-714	Blocking
 Blocking Panels are assumed to carry no loads 	s applied dired	ctly above the	m and the ful	l load is appli	ed to the mer	nber being de	signed.	

Lateral Bracing	Bracing Intervals	Comments						
Top Edge (Lu)	7' o/c							
Bottom Edge (Lu)	10' 10" o/c							
-Maximum allowable brasing inter	Maximum allowable burging interacting and an analised land							

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 34'	N/A	16.3			
1 - Uniform (PSF)	0 to 28' (Top)	2'	25.0	40.0		Default Load
2 - Uniform (PSF)	28' to 34' (Top)	2'	25.0	60.0		Default Load
3 - Uniform (PSF)	11' to 14' 3 1/2" (Top)	9'	12.0	-		Default Load
4 - Point (lb)	11' (Top)	N/A	-	-	18398	Default Load
5 - Point (lb)	14' 3 1/2" (Top)	N/A	-	-	-18398	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 49 / 66

Main, 60

3 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL

An excessive uplift of -2917 lbs at support located at 7' 8 1/2" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8566 @ 7' 8 1/2"	9844 (3.00")	Passed (87%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4728 @ 1' 1/2"	9476	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	11822 @ 3' 11"	17662	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.171 @ 4' 1 1/8"	0.253	Passed (L/531)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.237 @ 4' 1/2"	0.379	Passed (L/385)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -237 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.00"	2211	4230	2234/-2234	6556/-237	Blocking
2 - Stud wall - DF	3.00"	3.00"	2.61"	2211	4230	6062/-6062	8566/- 2917	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 10" o/c	
Bottom Edge (Lu)	7' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 7' 10"	N/A	14.5			
1 - Uniform (PSF)	0 to 7' 10" (Top)	12'	25.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 7' 10" (Top)	10'	25.0	60.0	-	Default Load
3 - Point (Ib)	5' 8" (Front)	N/A	-	-	8296	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 50 / 66

Main, 60 (w_overstrength)

3 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL

An excessive uplift of -2468 lbs at support located at 3" failed this product. An excessive uplift of -9397 lbs at support located at 7' 7" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	13426 @ 7' 7"	14766 (4.50")	Passed (91%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	12276 @ 6' 8"	15162	Passed (81%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	23484 @ 5' 8"	28260	Passed (83%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.257 @ 4' 2 1/4"	0.244	Failed (L/342)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.314 @ 4' 1 5/8"	0.367	Passed (L/280)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	В	Bearing Length			Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	4.50"	4.50"	2.51"	2211	4230	5421/-5421	8229/- 2468	Blocking
2 - Stud wall - DF	4.50"	4.50"	4.09"	2211	4230	15319/- 15319	13426/- 9397	Blocking
 Blocking Papels are assumed to carry no load 	c applied dire	ctly above the	m and the ful	l load ic annli	ad to the mer	nhar haina da	cianed	

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 10" o/c					
Bottom Edge (Lu)	7' 10" o/c					
Maximum allowable bracing intervals based on applied load.						

10'

N/A

Dead Floor Live Seismic (1.60) Location (Side) Tributary Width (0.90)(1.00) Vertical Loads 0 - Self Weight (PLF) 0 to 7' 10" N/A 14.5 1 - Uniform (PSF) 0 to 7' 10" (Top) 12' 25.0 40.0 -

0 to 7' 10" (Top)

5' 8" (Front)

Weyerhaeuser Notes

2 - Uniform (PSF)

3 - Point (lb)

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

60.0

25.0

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

Comments

Default Load

Default Load

20740

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 51 / 66

Main, 61 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 12' 11 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5168 @ 1 1/2"	6563 (3.00")	Passed (79%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3907 @ 1' 7"	10640	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	16129 @ 6' 5 7/8"	31114	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.139 @ 6' 5 7/8"	0.424	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.230 @ 6' 5 7/8"	0.636	Passed (L/664)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	2.36"	2053	3115	5168	Blocking	
2 - Stud wall - DF	3.00"	3.00"	2.36"	2053	3115	5168	Blocking	
Placking Danale are accurred to carry no loade applied directly above them and the full load is applied to the member being designed								

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 11" o/c	
Bottom Edge (Lu)	13' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 11 3/4"	N/A	16.3		
1 - Uniform (PSF)	0 to 12' 11 3/4" (Top)	12'	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	1409 @ 3"	1969 (1.50")	Passed (72%)		1.0 D + 1.0 L (All Spans) [1]
Shear (lbs)	1029 @ 1' 7"	5320	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-Ibs)	3268 @ 3' 11 1/2"	15557	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.024 @ 3' 11 1/2"	0.247	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.038 @ 3' 11 1/2"	0.371	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on DF studWall	3.00"	Hanger ¹	1.50"	570	908	1478	See note 1
2 - Hanger on 16" DF beam	3.00"	Hanger ¹	1.50"	570	908	1478	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 5" o/c					
Bottom Edge (Lu)	7' 5" o/c					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Ac						Accessories			
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
2 - Face Mount Hanger	IUS1.81/14	2.00"	N/A	12-10d	2-10dx1.5				

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3" to 7' 8"	N/A	8.2		
1 - Uniform (PSF)	0 to 7' 11" (Top)	4' 3"	25.0	40.0	Default Load
2 - Point (lb)	3' 11 1/2" (Front)	N/A	238	470/-160	Linked from: 55, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 53 / 66

Main, 63 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1394 @ 1 1/2"	3281 (3.00")	Passed (42%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	740 @ 1' 7"	5320	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	2182 @ 3' 4 1/2"	15557	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.015 @ 3' 4 1/2"	0.217	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.023 @ 3' 4 1/2"	0.325	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	449	945	1394	Blocking
2 - Beam - DF	3.00"	3.00"	1.50"	449	945	1394	Blocking
Blocking Panels are assumed to carry no load	c applied dire	ctly above the	m and the ful	Lload is appli	od to the mor	nhor hoing d	ocianod

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 9" o/c	
Bottom Edge (Lu)	6' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 9"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 9" (Top)	4'	25.0	60.0	Default Load
2 - Uniform (PSF)	0 to 6' 9" (Top)	1'	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Main, 64 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

Overall Length: 24'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4298 @ 23' 8"	19663 (5.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3683 @ 1' 10"	14575	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	24242 @ 12' 3/4"	39657	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.563 @ 12' 3/4"	0.774	Passed (L/495)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.844 @ 12' 3/4"	1,160	Passed (L/330)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length L = 23' 2 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	7.00"	1.50"	1448	2895	4343	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	1433	2865	4298	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	24' o/c				
Bottom Edge (Lu)	24' o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 24'	N/A	20.0		
1 - Uniform (PSF)	0 to 24' (Top)	4'	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 55 / 66

PASSED

Main, 65 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2940 @ 16' 1 1/2"	19663 (5.50")	Passed (15%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2325 @ 1' 10"	14575	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	11047 @ 8' 3 1/2"	41247	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.117 @ 8' 3 1/2"	0.522	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.175 @ 8' 3 1/2"	0.783	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 15' 8".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	7.00"	1.50"	995	1990	2985	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	980	1960	2940	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	16' 6" o/c					
Bottom Edge (Lu)	16' 6" o/c					
Maximum allowable bracing intervals based on applied load						

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 16' 5 1/2"	N/A	20.0		
1 - Uniform (PSF)	0 to 16' 5 1/2" (Top)	4'	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Main, 66 1 piece(s) 3 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6005 @ 16' 1 1/2"	12513 (5.50")	Passed (48%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4749 @ 1' 10"	9275	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	22558 @ 8' 3 1/2"	26250	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.390 @ 8' 3 1/2"	0.522	Passed (L/482)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.562 @ 8' 3 1/2"	0.783	Passed (L/334)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

· Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 15' 8".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	7.00"	2.68"	1868	4229	6097	Blocking
2 - Column Cap - steel	5.50"	5.50"	2.64"	1840	4165	6005	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	15' 5" o/c					
Bottom Edge (Lu)	16' 6" o/c					
Maximum allowable bracing intervals based on applied load						

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 16' 5 1/2"	N/A	12.8		
1 - Uniform (PSF)	0 to 16' 5 1/2" (Top)	8' 6"	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 57 / 66

Main, 67 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1033 @ 1 1/2"	3281 (3.00")	Passed (31%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	141 @ 1' 7"	5320	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	823 @ 1' 10"	15557	Passed (5%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 1' 10"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 1' 10"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	465	568	1033	Blocking
2 - Beam - DF	3.00"	3.00"	1.50"	465	568	1033	Blocking
 Plocking Dapole are accumed to carry no load 	a applied dire	ctly above the	m and the ful	load is appli	od to the mor	nhor hoing d	ocianod

are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 8" o/c	
Bottom Edge (Lu)	3' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 8"	N/A	8.2		
1 - Uniform (PSF)	0 to 3' 8" (Top)	4' 6"	25.0	60.0	Default Load
2 - Uniform (PSF)	0 to 3' 8" (Top)	1'	25.0	40.0	Default Load
3 - Uniform (PSF)	0 to 3' 8" (Top)	9'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	

FAILED

Main, 68 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

An excessive uplift of -7443 lbs at support located at 3" failed this product.

An excessive uplift of -1429 lbs at support located at 5' 10" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8717 @ 3"	9844 (4.50")	Passed (89%)		1.0 D + 0.7 E (All Spans)
Shear (lbs)	5506 @ 1' 8 1/2"	17024	Passed (32%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	9219 @ 1' 4"	49783	Passed (19%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	-0.028 @ 1' 4"	0.186	Passed (L/999+)		0.6 D - 0.7 E (All Spans)
Total Load Defl. (in)	0.031 @ 2' 8 7/8"	0.279	Passed (L/999+)		1.0 D + 0.7 E (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	4.50"	4.50"	3.98"	796	943	11315/- 11315	8717/- 7443	Blocking
2 - Beam - DF	4.50"	4.50"	1.50"	796	943	2724/-2724	2934/- 1429	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments							
Top Edge (Lu)	6' 1" o/c								
Bottom Edge (Lu)	6' 1" o/c								
Maximum allowable bracing intervals based on applied load									

mum allowable bracing intervals based on applied load

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 6' 1"	N/A	16.3			
1 - Uniform (PSF)	0 to 6' 1" (Top)	4' 6"	25.0	60.0		Default Load
2 - Uniform (PSF)	0 to 6' 1" (Top)	1'	25.0	40.0		Default Load
3 - Uniform (PSF)	0 to 6' 1" (Top)	9'	12.0	-		Default Load
4 - Point (lb)	1' 4" (Front)	N/A	-	-	14039	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 59 / 66

Main, 69 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3506 @ 11' 11"	6563 (3.00")	Passed (53%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2380 @ 1' 7"	10640	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9322 @ 6' 1/4"	31114	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.098 @ 6' 1"	0.393	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.146 @ 6' 1"	0.590	Passed (L/972)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -209 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.

-230 lbs uplift at support located at 11' 11". Strapping or other restraint may be required.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.60"	1303	1927	1415/-1415	3490/-209	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.60"	1303	1927	1445/-1445	3506/-230	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments						
Top Edge (Lu)	12' 1" o/c							
Bottom Edge (Lu)	12' 1" o/c							
•Maximum allowable bracing intervals based on applied load.								

app

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 12' 1/2"	N/A	16.3			
1 - Uniform (PSF)	0 to 12' 1/2" (Top)	8'	25.0	40.0	-	Default Load
2 - Point (lb)	6' 1" (Front)	N/A	-	-	2860	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser facilities and sense and been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233
javiddabdi@yahoo.com

Main, 69 (w_overstrength)

2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

An excessive uplift of -1694 lbs at support located at 1 1/2" failed this product. An excessive uplift of -1748 lbs at support located at 11' 11" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4644 @ 11' 11"	6563 (3.00")	Passed (71%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3922 @ 10' 5 1/2"	17024	Passed (23%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	18995 @ 6' 1"	49783	Passed (38%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.168 @ 6' 1"	0.393	Passed (L/844)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.215 @ 6' 1"	0.590	Passed (L/659)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.10"	1303	1927	3537/-3537	4604/- 1694	Blocking
2 - Stud wall - DF	3.00"	3.00"	2.12"	1303	1927	3613/-3613	4644/- 1748	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	9' 2" o/c			
Bottom Edge (Lu)	12' 1" o/c			
•Maximum allowable bracing intervals based on applied load.				

m allowable bracing intervals based on applied load

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 12' 1/2"	N/A	16.3			
1 - Uniform (PSF)	0 to 12' 1/2" (Top)	8'	25.0	40.0	-	Default Load
2 - Point (lb)	6' 1" (Front)	N/A	-	-	7150	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes

10/17/2022 10:39:57 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.3.0 File Name: Mithalia Residence Page 61 / 66

Main, 70 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 3' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	924 @ 1 1/2"	3281 (3.00")	Passed (28%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	88 @ 1' 7"	5320	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	697 @ 1' 9"	15557	Passed (4%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 9"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.004 @ 1' 9"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	364	560	924	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	364	560	924	Blocking
- Placking Danale are accurated to carry no loade applied directly above them and the full load is applied to the member being designed							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 6" o/c	
Bottom Edge (Lu)	3' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	8.2		
1 - Uniform (PSF)	0 to 3' 6" (Top)	8'	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Main, 71 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 3' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1332 @ 1 1/2"	3281 (3.00")	Passed (41%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	127 @ 1' 7"	5320	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1005 @ 1' 9"	15557	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 1' 9"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.006 @ 1' 9"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	521	811	1332	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	521	811	1332	Blocking
Blacking Development and the server as load							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 6" o/c	
Bottom Edge (Lu)	3' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	8.2		
1 - Uniform (PSF)	0 to 3' 6" (Top)	11' 7"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

PASSED

Main, 33+34 1 piece(s) 6 x 6 DF No.1

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	8283	20918	Passed (40%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	8283	898425	Passed (1%)		1.0 D + 1.0 L
Bending/Compression	0.49	1	Passed (49%)	1.00	1.0 D + 1.0 L

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Beam		Steel	
Max Unbraced Length	L	Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2015 Design Methodology : ASD

Drawing	is	Concentual
Diawing	13	Conceptual

Vertical Loads	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	1589	3240	Linked from: 33, Support 2
2 - Point (lb)	1136	2318	Linked from: 34, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Main, 33+34+66+63 1 piece(s) 6 x 6 DF No.1

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	15774	20918	Passed (75%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	15774	898425	Passed (2%)		1.0 D + 1.0 L
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Beam		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2015 Design Methodology : ASD

Drawing is Conceptual

Vertical Loads	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	1589	3240	Linked from: 33, Support 2
2 - Point (Ib)	1136	2318	Linked from: 34, Support 1
3 - Point (Ib)	1868	4229	Linked from: 66, Support 1
4 - Point (Ib)	449	945	Linked from: 63, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	

Main, Garage Joists 1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1006 @ 4 1/2"	4648 (4.25")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	808 @ 1' 4 3/4"	3741	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3035 @ 6' 8"	8391	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.071 @ 6' 8"	0.315	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.205 @ 6' 8"	0.629	Passed (L/737)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	61	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.25"	1.50"	667	356	1022	1 1/4" Rim Board
2 - Stud wall - DF	5.50"	4.25"	1.50"	667	356	1022	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 2" o/c	
Bottom Edge (Lu)	13' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 4"	16"	75.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabd@yahoo.com

	17
-	SK - 3
	Oct 18, 2022 at 11:03 AM
	uriniou.rou

z x			
		79907	
		10.4.17	
	7787		
		rten ten	
	7.417		
Member Length (ft) Displayed			
			SK - 1
			Oct 18, 2022 at 11:07 AM
			Mithalia.r3d

z. x			
Loads: BLC 1, soil	OK/ft Jak/it	SSK/ft	
			SK - 2
			Oct 18, 2022 at 11:07 AM
			Mithalia.r3d

z x		
Loads: BLC 2, seismic	.054k/tt	
		SK - 3
	-	SK - 3 Oct 18, 2022 at 11:08 AM

Mithalia Retaining Wall 4.5 ft

CANTILEVER RETAINING WALL EXTERNAL STABILITY

soil retained

wall width

toe width

heel width

total height

total base

soil depth above toe

concrete unit weight

total overturning Moment

H1 + H2

passive pressure soil depth

footing thickness

uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)

Nilson & Winter, Design of Concrete Structures, 11th Edition, page 680

limitations

reference:

file author:

S. Frech	last modified:	4/25/2002

SOIL	DATA
	w

phi

del

Са

Ср

H1

H2

H3

H4

Β1

B2

В3

Н

В

WALL GEOMETRY

120		(pcf)	soil unit weight
35		(deg)	soil internal angle of friction
	0	(deg)	surface angle incline
0.4			coeff. friction w/Concrete
0.819			cosine(phi)
1.000			cosine(del)
0.417		50 psf	coeff. of active pressure
2.500		300 psf	coeff. of passive pressure

(ft)

(ft)

(ft)

(ft)

(ft)

(ft)

(ft)

(ft)

(ft)

(pcf)

Coeff. Friction			
Unit Weight	Int Friction	w. Conc	Soil
110-120	33-40	0.5-0.6	Sand or gravel, no fines
120-130	25-35	0.4-0.5	Sand or gravel, w/ fines
110-120	23-30	0.3-0.4	Silty sand, high clay
100-120	25-35	0.2-0.4	Medium or stiff clay
90-110	20-25	0.2-0.3	Soft clay, silt

 $P = \frac{1}{2}C_{ah}wh^2$

3(+2) $P = \frac{1}{2}C_{a,h}wh(h+2h')$

Resultant outside middle

EXTERNAL LOADS			
Papplied	0	(lb/ft)	
V _{applied}	0	(lb/ft)	
Mapplied	0	(lb-ft / ft)	
Surcharge	0	(psf)	

4.5

0.5833333

1.25

1.8333333

0.6666667

2

1

6.3333333

3.6666667

150

LOAD CALCULATIONS

lateral soil force and overturning moment			
H _{prime}	0.00	(ft)	converted surcharge
Y	2.11	(ft)	distance to soil load resultant
Р	1003	(lbs)	soil load resultant
	2120	(lb-ft)	Mo, soil + surcharge
	0	(lb-ft)	Mo, external load

(lb-ft)

wall restoring forces			
component	weight (#)	arm (ft)	moment (#-ft)
w1 (concrete)	508	2.33	1186
w2 (concrete)	688	1.83	1260
w3 (heel soil)	610	3.17	1932
w4 (surcharge)	0	3.17	0
w5 (toe soil)	140	1.00	140
P applied	0	2.33	0
vert. force	1,946	moment	4,518

2,120

lateral sliding resistance

504	(lb)	passive pressure sliding resistance
778	(lb)	soil friction force
1282	(lb)	total sliding resistance

STABILITY FACTOR OF SAFETY CHECKS

	1 1		F.S. overturning F.S. sliding
overturning	2.13	OK	Mr / Mo
sliding	1.28	ок	(PP+F)/(Ph+V)
SOIL BEARING			
а	1.23	(ft)	distance to resultant
	1.22' to 2.44'		middle third of footing
q1	1055	(psf)	bearing pressure @ toe
q2	7	(psf)	bearing pressure @ heel

FACTORED (1.7) STEM LOAD FORCES

5.0833333	(ft)
1.69	(ft)
646	(lbs)
646	(lbs)
1.9	(kip-ft)

Mithalia Retaining Wall 2.5 ft

CANTILEVER RETAINING WALL EXTERNAL STABILITY

uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)

Nilson & Winter, Design of Concrete Structures, 11th Edition, page 680

SOIL

limitations

reference:

file author:

S. Frech	last modified:	4/25/2002

(ft)

(ft)

(ft)

(ft)

DATA			
w	120	(pcf)	soil unit
phi	35	(deg)	soil inte
del	0	(deg)	surface
	0.4		coeff. fr
	0.819		cosine(
	1.000		cosine(
Ca	0.417	50 psf	coeff. o
Ср	2.500	300 psf	coeff. of

2.5

0.5833333

1.25

1.8333333

	soil unit weight
)	soil internal angle of friction
)	surface angle incline
	coeff. friction w/Concrete
	cosine(phi)
	cosine(del)
F	coeff. of active pressure
f	coeff. of passive pressure

soil retained

soil depth above toe

passive pressure soil depth

footing thickness

Coeff. Friction				
Unit Weight	Int Friction	w. Conc	Soil	
110-120	33-40	0.5-0.6	Sand or gravel, no fines	
120-130	25-35	0.4-0.5	Sand or gravel, w/ fines	
110-120	23-30	0.3-0.4	Silty sand, high clay	
100-120	25-35	0.2-0.4	Medium or stiff clay	
90-110	20-25	0.2-0.3	Soft clay, silt	

 $P = \frac{1}{2} C_{ah} w h^2$

 $P = \frac{1}{2}C_{a,h}wh(h+2h')$

(c) Resultant outside middle third

H4	1
B1	(
B2	
B3	

Н

В

WALL GEOMETRY

H1

H2

H3

0.6666667	(ft)	wall width
1.5	(ft)	toe width
0.5	(ft)	heel width
4.3333333	(ft)	total height
2.6666667	(ft)	total base
150	(pcf)	concrete unit weight

EXTERNAL LOADS

Papplied	0	(lb/ft)
V _{applied}	0	(lb/ft)
Mapplied	0	(lb-ft / ft)
Surcharge	0	(psf)

LOAD CALCULATIONS

lateral so	oil force and	overturnin	ig moment
H _{prime}	0.00	(ft)	converted surcharge

primo		()	5
Y	1.44	(ft)	distance to soil load resultant
Р	469	(lbs)	soil load resultant
	680	(lb-ft)	Mo, soil + surcharge
	0	(lb-ft)	Mo, external load
	680	(lb-ft)	total overturning Moment

wall restoring forces				
component	weight (#)	arm (ft)	moment (#-ft)	
w1 (concrete)	308	1.83	565	
w2 (concrete)	500	1.33	667	
w3 (heel soil)	185	2.42	447	
w4 (surcharge)	0	2.42	0	
w5 (toe soil)	105	0.75	79	
P applied	0	1.83	0	
vert. force	1,098	moment	1,758	

lateral sliding resistance

504	(lb)	passive pressure sliding resistance
439	(lb)	soil friction force
943	(lb)	total sliding resistance

STABILITY FACTOR OF SAFETY CHECKS

	1 1		F.S. overturning F.S. sliding
overturning	2.59	ОК	Mr / Mo
sliding	2.01	ок	(PP+F)/(Ph+V)
SOIL BEARI	NG		
а	0.98	(ft)	distance to resultant
	0.89' to 1.78'		middle third of footing
q1	739	(psf)	bearing pressure @ to

FACTORED (1.7) STEM LOAD FORCES

q2

84

(psf)

bearing pressure @ toe bearing pressure @ heel H1 + H2e)

line of action (above base
P (arm only)
Ph (arm only)
Mu (arm moment)