

1. LATERAL DESIGN

1.1 Seismic Design

Criteria	Basic Seismic-Force-Resisting System			Diaphragms / Shear Walls
	Medium Building Height	H	$=$	15 ft
	Seimic Use Group			11
	Importance Factor	le	=	1.0
	Site Class			D
	Seismic Design Category			D
	Response Factor	R	=	6.5 (light frame wood building)
	Mapped Acceleration	Ss	=	1.5
		S_{1}	=	0.61
	Design Acceleration	SD ${ }_{\text {s }}$	=	1.14
		SD1	=	NA
	Seismic Response Coefficient	Cs	=	SDs / (R/l)
			=	$1.14 /(6.5 / 1.0)=0.175$, say 0.18

Building Weight

The weight of the walls is applied by adding 5 psf to the roof DL (upper half of walls) and 10 psf to the floor DL (full story height)

	$\mathrm{W}=$	$(20+10) \times 2,000 \mathrm{sqft}$	$=$	60,000 lbs
Base Shear	$V_{\text {Base }}=$	$\mathrm{C}_{s} \times \mathrm{W}=0.18 \times 60,000$	$=$	10,800 lbs
Design Shear:	To convert from strength level to ASD, Base Shear is multiplied by 0.7			
	$V_{\text {Design }}=$	$0.7 \times 10,800$	$=$	7,560 lbs
Uniform load:	Front/rear	7,560 / 50	$=$	150 plf
	Right/left	7,560 / 35	=	220 plf

REPORT SUMMARY

Site
Information

Address:	7701 SE 39th St, Mercer Island, Washington, 98040
Elevation:	0 ft (NAVD 88)
Lat:	47.575096
Long:	-122.236706
Standard:	ASCE/SEI 7-22
Risk Category:	II
Soil Class:	D - Stiff Soil

Seismic Data

S_{S}	1.58
$\mathrm{~S}_{1}$	0.64
$\mathrm{~S}_{\mathrm{MS}}$	1.71
$\mathrm{~S}_{\mathrm{M} 1}$	1.33
$\mathrm{~S}_{\mathrm{DS}}$	1.14
$\mathrm{~S}_{\mathrm{D} 1}$	0.89
$\mathrm{~T}_{\mathrm{L}}$	6
$\mathrm{PGA}_{\mathrm{M}}$	0.72
$\mathrm{~V}_{\mathrm{S} 30}$	260
Seismic Design Category	D
	Where values of the multi-period 5\%-damped MCER response spectrum are not available from the USGS Seismic Design Geodatabase, the design response spectrum shall be permitted to be determined in accordance with Section 11.4 .5 .2
Note	(

1.2 Wind Design

Directional Procedure, Part 2 (simplified method) per ASCE 7-16, Chapter 27.5

Design Criteria: Enclosed Simple Diaphragm Building Risk Category II

Basic Wind Speed per Table 26.5-1A	110 MpH
Directionality Factor K_{d}	0.85
Exposure Category	B
Wind Speed up factor K_{zt}	1.0 per DPD wind map
Enclosure Classification	enclosed
Net pressure at top of wall p_{n}, Table 27.6-1	17.5 psf
\quad (conservatively also used for bottom of wall)	

As the shear wall design is performed for ASD, the load is multiplied with 0.7
Applied wind pressure $\quad 0.7 \times 17.5 \quad=\quad 12.25$, say 13 psf

Uniform wind load on roof diaphagms

$$
\mathrm{w} / \text { trib h } 10 \mathrm{ft} \quad \mathrm{w}=10 \times 10 \quad=\quad 130 \mathrm{plf}
$$

With seismic load greater in both directions, no further wind evluation was performed

수N

	入 ×

$\underset{\sim}{\sim}$

$\stackrel{\times}{\text { N }}$

$\overline{\text { « }} \stackrel{\text { た }}{\text { ® }}$ N

$\bar{\sigma}$
몸

$\stackrel{\infty}{\bar{\pi}}$

∞ 욱

$r N$
Shear Wall Types

$\underset{0}{\infty}$	$\begin{aligned} & \overline{6} \\ & \frac{1}{N} \\ & \frac{1}{N} \end{aligned}$
$\underset{~ ふ ~}{2}$	$\frac{\varphi}{\dot{\alpha}} \frac{?}{2}$

$\begin{array}{lc}\text { Roof } & 7 / 16 " \\ \text { Floor } & 3 / 4 " C D X\end{array}$
Holdowns

七刀口H	G6LZ	096L乙	0982	乙	8	00808	8.0	8	00\％）d L⿹勹N	ع－1d	G88	O\％ 01	0988	MON	
pbı $\ddagger 0$ u	689－	ย๖GEL－	SELLZ	9	8	2618	SE0	8	00 ¢ ¢ ¢－	9－1d					
pbi ı0u	ટع乙－	1988－	9 9G8	9	8	G919	GS＇0	8	OG＇ャレ d こ O	9－1d					
己OOH	881	$\angle \downarrow 8$	9GL	9	8	ع09 1	8L＇	8	OG＇† เロכ	9－1d	St	O＇で	0＜81	0／90	
pbı $\downarrow \mathrm{O}$	664－	096Lて－	096LG	8	8	0000	$\varepsilon \chi^{\prime} 0$	8	00\％GE d $1-1$	9－1d	$\angle O 1$	$0 \cdot \varsigma \varepsilon$	$09 \angle \varepsilon$	\downarrow	
	sqı）	（ + －q\｜）	（ \downarrow－qı）		（ł）	（ 7 －q｜）	7／Y	（ł）	（ł）		$(y \mid d) \wedge$	（ł） 7	$(s q \\|) \wedge$		
	1		－ısəy	$7 \cdot 9!\downarrow$	H＇q！		o！pey			${ }^{\text {® }}$ K \perp_{\perp}	mı刀！！un	¢セłOt			
MH	H！${ }^{\text {d }}$	101 W	soı W	$\boldsymbol{I} / \mathbf{/ C}$	॥EM	10 W	¡．əds \forall	4	7 joued	MS	deəus	पұбиә7	Jeəus	טן	
									6u！̣unłлəло			uถısəp ıеәบS			
													E0｜ग！u	S！əS	

Correction Notes

Key No. 10 Beam, DF No. 2, 6x10"

Span:	L	$=$	10 ft
Load:	floor w/ trib 6 ft, wall w/h 10 ft		
	DL	$6 \times 20+10 \times 10$	$=$
	6×40	$=$	220 plf
	LL	6	

For calculation see design sheets

Key No. 11 Post in Bmnt, DF No. 2, 4x4"

Height:	from post 07 above, reaction from beam 10, $\quad=\quad 8 \mathrm{ft}$			
Loads:				
	Downforce from seismic design (soil bearing capacity increased by $1 / 3$ for transient load)			
	PDL	1,130 + 1,110	$=$	2,240 lbs
	PLL	1,130 + 1,210		2,340 lbs
	P seis		=	2,800 lbs

For calculation see design sheets

Key No. 12 Spread Footing, fc = 2,500 psi, 24x24x8"

Load	from post 11					
	P	Gravity			=	4,580 lbs
	P	Seismic			=	2,800 lbs
Soil pressure gravity alone	ravity alone		4,580 / 4	=	1,145 psf	psf
Soil pressure including seismic			7,380/4	=	1,845 psf	x $1.33=$

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 4)
Loads:

Load	Type	Distribution	$\begin{aligned} & \text { Pat- } \\ & \text { tern } \\ & \hline \end{aligned}$	```Location [ft] Start End```	Magnitude Start End	Unit
DL	Dead	Full UDL			220.0	plf
LL	Live	Full UDL			240.0	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

Timber-soft, D.Fir-L (N), No.2, 6×10 (5-1/2"x9-1/2")
Supports: All - Timber-soft Beam, D.Fir-L (N) No. 2
Total length: 10'-0.69"; Clear span: 9'-11.31"; Volume = 3.6 cu.ft.; Beam or stringer Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design	Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=55$	Fv' =	170	psi	$\mathrm{fv} / \mathrm{Fv}$ ' $=0.32$
Bending (+)	$\mathrm{fb}=834$	$\mathrm{Fb}^{\prime}{ }^{\text {/ }}$	875	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.95$
Dead Defl'n	$0.05=<L / 999$				
Live Defl'n	$0.11=<L / 999$	$0.33=$	L/360	in	0.32
Total Defl'n	$0.15=\mathrm{L} / 778$	0.50	L/240	in	0.31

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2018) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

Design Check Calculation Sheet
 WoodWorks Sizer 2019 (Update 4)

Loads:

Load	Type	Distribution	Location [ft] Start End	Magnitude Start	End

Reactions (lbs):

Unfactored:			
Lateral:			
Dead			
Live			2240
Earthquak申			2340
Axial:	2240		2800
Dead	2340		
Live			
Earthquak	2800		
Factored:			
L->R			
Load comb	$\# 1$		

> Lumber Post, D.Fir-L (N), No.1/No.2, $\mathbf{4 \times 4}(\mathbf{3 - 1 / 2 " x 3 - 1 / 2 ")}$
> Support: Non-wood
> Total length: 8 '; Volume $=0.7$ cu.ft.
> Pinned base; $K e \times$ Lb: $1.0 \times 8.0=8.0 \mathrm{ft} ; \mathrm{Ke} \times \mathrm{Ld}: 1.0 \times 8.0=8.0 \mathrm{ft}$;
> This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	$\mathrm{fc}=446$	Fc' $=598$	psi	fc/Ec' $=0.75$
Axial Bearing	$\mathrm{fc}=446$	FC* $=2576$	psi	$\mathrm{fc} / \mathrm{FC}^{*}=0.17$

Additional Data:

| FACTORS: | F/E(psi) | CD | CM | Ct | CL/CP | CF | Cfu | Cr | Cfrt | Ci | LC\# |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| FC' | 1400 | 1.60 | 1.00 | 1.00 | 0.232 | 1.150 | - | - | 1.00 | 1.00 | 3 |
| FC* * | 1400 | 1.60 | 1.00 | 1.00 | - | 1.150 | - | - | 1.00 | 1.00 | 3 |

CRITICAL LOAD COMBINATIONS:

Axial : LC \#3 = D + 0.75 (L + 0.7E)
D=dead L=live E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.1

Design Notes:

1. Analysis and design are in accordance with the ICC International Building Code (IBC 2018) and the National Design Specification (NDS 2018), using Allowable Stress Design (ASD). Design values are from the NDS Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
