STRUCTURAL CALCULATIONS

Wu-Chang Residence 2956 72nd Ave SE Mercer Island, WA

Client: CenterLine Architects

Javid Abdi, PE, SE 6810 NE 149th St. Kenmore, WA – 98028 <u>Atlas.CSE@gmail.com</u> 206-427-7233

Project:	2956 72nd Ave SE (Mercer Island)	By:	JDA
Proj No:	248-2024	Date: 03	/05/2024

Summary

The project consists of a new two story 2800 SF (+) single family residence (SFR) located in Mercer Island. The upper floor will include living space and a 190 SF (+) covered deck at the north elevation, while the main floor will encompass entertaining and gathering spaces. The two floors will be joined by central staircase located at the south. An existing 1100 SF (+) garage on the lot will be completely separate from the new SFR and not have impact on the project.

The SFR will be comprised of the following: reinforced concrete strip and spread footings; reinforced concrete foundation walls; wood framed crawl-space main floor supported on exterior foundation walls and interior posts and beams; wood framed upper floor supported on interior and exterior wood framed load bearing walls, beams, and posts; and connector plate wood trusses framing the roofs. The lateral system will consist of wood sheathed diaphragms and shear walls (tongue & groove plywood floor sheathing, plywood roof and plywood wall sheathing), and Simpson StrongTie holdowns.

See page 2 for lateral design. Site seismic variables are shown on pages 3 - 4; shearwall lengths shown on page 5 - 6; wind areas shown on page 7; and wind load derivation shown on pages 8 - 14. Seismic and wind loads were determined using ASCE 7-16 procedures. As shown on page 2, shearwalls with 10d nails spaced at 6" o.c. (SW-6), 4" o.c. (SW-4), and 3" o.c. (SW-3) are required. Shearwalls have been detailed to meet the ASD shearwall capacity values as listed in plans. LTP4 and A34 clips have an ASD capacity of 540# and 550# per clip; SDS screws have an ASD capacity of 400# per screws; 5/8" and 3/4" diameter anchor bolts have an ASD capacity of 1485# and 2039# with doug fir plates. The required spacing of these connectors is shown in the shearwall table in the plans. Each shearwall will have a different uplift demand, as shown on page 2. Simpson holdowns will be used as shown in the plans, sized to ensure ASD uplift capacity. Anchorage of the HDU's into concrete were designed for worst case LRFD load when including the seismic overstrength factor. To preclude breakout, additional reinforcing hairpins are detailed to transfer shear force into new foundation walls. Use strapped shearwalls to minimize amount and magnitude of holdowns; see pages 15 - 27. Extend straps above and below opening a sufficient distance to ensure strap has capacity and shearwall capacity is not exceeded.

Gravity system was designed for 25 psf roof snow load, 15 psf roof dead load (20 psf at attic trusses), 40 psf floor live load, 60 psf deck load, and 25 psf floor dead load. See pages 28-30 for framing key; and pages 31 - 55 for member designs. Uplift for each member considering 0.6D+0.6W will be resisted by straps at headers/beams; and H2.5a hurricane ties at rafters and trusses.

Design new footings for a 1500 psf bearing pressure, and provide minimum reinforcing in footings and walls per ACI.

Subject: Calculation Overview Project: Wu-Chang Residence Client: CenterLine

Project:		2956 72nd Ave SE (Mercer Island)	By:	JDA
Proj No:		248-2024	Date:	3/5/2024
R	6.5	ASCE 7.16 Table 122-1		

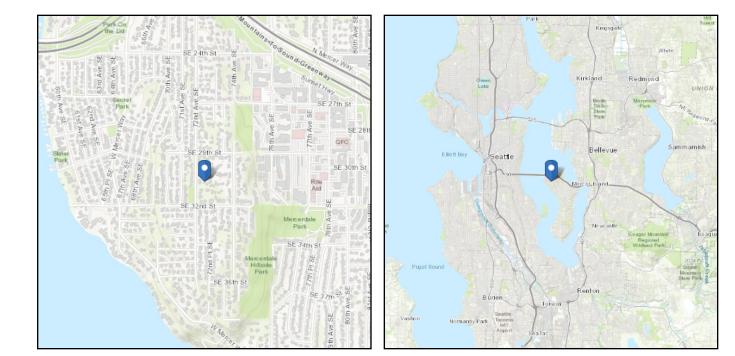
R	6.5	ASCE 7-16 Table 12.2-1				
Ω_n	2.5					
Cd	4					
Soil Class	CD		D	С	CD	
v	18.0	= CsW - ASCE 7-22 (12.8-1)				Kips
С,	0.180		0.174	0.178	0.180	
-		= S _x / (R/L) - ASCE 7-22 (12.8-2) Method 1	-	-	-	
	0.180	= S ₁₀ / (R/I _a) - ASCE 7-22 (12.8-2) Method 2	0.174	0.178	0.180	
	0.372	< S ₂₁ / T(R/I _a) - if T <t<sub>1, ASCE 7-22 (12.8-4)</t<sub>	0.454	0.296	0.372	
		< S ₂₁ T _L / T(R/I ₀) ~ if T>T _L , ASCE 7-22 (12.8-5)	-	-	-	
	0.008	>0.08S ₁ (R/I _a) - ASCE 7-22 (15.4-2)	0.008	0.008	0.008	
	0.049	>0.5S ₁ / (R/l _a) ~ if S ₁ >0.6g, ASCE 7-22 (12.8-7)	0.049	0.049	0.049	
w	100	Kips				
I.	1	ASCE 7-22 Table 1.5-2				
S _a	-	ASCE 7 Hazard Tool	-	-	-	
Ss	1.56	ASCE 7 Hazard Tool	1.56	1.56	1.56	
S ₁	0.64	ASCE 7 Hazard Tool	0.64	0.64	0.64	
S _{mS}	1.75	ASCE 7 Hazard Tool	1.7	1.73	1.75	
Smi	1.09	ASCE 7 Hazard Tool	1.34	0.88	1.09	
Sds	1.17	= 2/3 Sm ~ ASCE 7-22 (11.4-1)	1.13	1.16	1.17	
S _{d1}	0.73	= 2/3 Sm1 ~ ASCE 7-22 (11.4-2)	0.89	0.58	0.73	
TL	6	ASCE 7 Hazard Tool	6	6	6	
PGAm	0.73	ASCE 7 Hazard Tool	0.72	0.7	0.73	
V ₅₃₀	365	ASCE 7 Hazard Tool	260	530	365	
S _{DC}	D	ASCE 7 Hazard Tool	D	D	D	
C,	0.025	ASCE 7-22 Table 12.8-2				
hn	22.50	feet				
x	0.8	ASCE 7-22 Table 12.8-2				
т	0.302	seconds = C:h.*. ASCE 7-22 (12.8-8)				
	Weight	Height Story H Wh C ₁₁₄	F _{xE} , Kips	∑F sE, Kips	F _{xE} , Kips	$\sum F_{s}$

Story	Weight	Height	Story H	Wh	C_{vx}	F _{xE} , Kips	ΣF_{sE} , Kips	F _{xE} , Kips	$\sum F_{xE}$, Kips	F _{xW} , Kips	$\sum F_{xW}$, Kips	F _{xW} , Kips	$\sum F_{xW}$, Kips	$F_{\rho x}$
olory	(Kips)	(ft)	(ft)	(Kip-ft)	$(Wb/\Sigma Wb)$	$(C_m V)$	LRFD	$(C_m V)$	ASD	E/WASD	E/WASD	N/S ASD	N/S ASD	ASD
Roof	27.63	22.50	10.00	622	0.53	9.6	9.6	6.718	6.718	3.609	3.609	4.464	4.464	6.718
Upper Floor	36.13	12.50	10.00	452	0.39	7.0	16.6	4.880	11.598	3.854	7.463	5.143	9.607	6.655
Main Floor	36.02	2.50	2.50	90	0.08	1.4	18.0	0.973	5.854	0.000	7.463	0.000	9.607	5.901
∑W	99.78													

									UF		INNING WALLS							
										Upper - t								
				SEISM			WIND				VITY LOADING							
	%			PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp				
WEST	50.0%	21.66	3,359			2,232									10.00	ft		011
	100.0%	24.58	3,359	137	1,366	2,232	91	908	2,950	0	0	0	723	3,083	4	OK	MSTC28	OK
	40.5%	8.77	1,360	155		904	103								4			
	59.5%	12.89	1,999	155		1,328	103								4			
EAST	50.0%	14.67	3,359			2,232												
	100.0%	23.21	3,359	145	1,447	2,232	96	962	2,785	0	0	0	840	3,068	4	OK	MSTC28	OK
	23.9%	3.50	802	229		533	152								4	OK		
	26.1%	3.83	878	229		583	152								4	OK		
	26.1%	3.83	878	229		583	152								4	OK		
	23.9%	3.50	802	229		533	152								4	OK		
										Main - to	- Upper							
				SEISM	IIC		WIND											
	%	Length (ft)	# in Wall	DI							VITY LOADING	(plf)						
WEST	50.0%	16.66				# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	VITY LOADING Dead	(plf) Live	Uplift	Comp				
			5.799	PLF	Chord F (#)		PLF	Chord F (#)	Wall W (#)				Uplift	Comp	10.00	ft		
	100.0%	24.66		235	2,352	# in Wall 4,803 4,803	PLF 195	Chord F (#) 1,948	Wall W (#) 5,918				Uplift 1,061	Comp	10.00	ft OK	HDU2	OK
	100.0% 46.7%		5,799 5,799			4,803				Snow	Dead	Live					HDU2	ОК
	46.7%	24.66	5,799 5,799 2,706	235 348		4,803 4,803	195 288			Snow	Dead	Live				OK OK	HDU2	ОК
		24.66 7.77	5,799 5,799	235		4,803 4,803 2,241	195			Snow	Dead	Live				OK	HDU2	ОК
EAST	46.7% 29.2% 24.1%	24.66 7.77 4.86 4.02	5,799 5,799 2,706 1,694 1,400	235 348 348		4,803 4,803 2,241 1,403 1,160	195 288 288			Snow	Dead	Live				OK OK OK	HDU2	ОК
EAST	46.7% 29.2% 24.1% 50.0%	24.66 7.77 4.86 4.02 20.83	5,799 5,799 2,706 1,694 1,400 5,799	235 348 348 348	2,352	4,803 4,803 2,241 1,403 1,160 4,803	195 288 288 288	1,948	5,918	Snow0	Dead 0	0	1,061	5,795		OK OK OK OK		
EAST	46.7% 29.2% 24.1% 50.0% 86.6%	24.66 7.77 4.86 4.02 20.83 23.00	5,799 5,799 2,706 1,694 1,400 5,799 5,022	235 348 348 348 218		4,803 4,803 2,241 1,403 1,160 4,803 4,160	195 288 288 288 288			Snow	Dead	Live				OK OK OK OK	HDU2 HDU2	ОК
EAST	46.7% 29.2% 24.1% 50.0% 86.6% 15.8%	24.66 7.77 4.86 4.02 20.83 23.00 3.29	5,799 5,799 2,706 1,694 1,400 5,799 5,022 916	235 348 348 348 218 278	2,352	4,803 4,803 2,241 1,403 1,160 4,803 4,160 759	195 288 288 288 181 231	1,948	5,918	Snow0	Dead 0	0	1,061	5,795		OK OK OK OK		
EAST	46.7% 29.2% 24.1% 50.0% 86.6% 15.8% 23.4%	24.66 7.77 4.86 4.02 20.83 23.00 3.29 4.88	5,799 5,799 2,706 1,694 1,400 5,799 5,022 916 1,357	235 348 348 348 218 278 278	2,352	4,803 4,803 2,241 1,403 1,160 4,803 4,160 759 1,124	195 288 288 288 181 231 231	1,948	5,918	Snow0	Dead 0	0	1,061	5,795				
EAST	46.7% 29.2% 24.1% 50.0% 86.6% 15.8%	24.66 7.77 4.86 4.02 20.83 23.00 3.29	5,799 5,799 2,706 1,694 1,400 5,799 5,022 916	235 348 348 348 218 278	2,352	4,803 4,803 2,241 1,403 1,160 4,803 4,160 759	195 288 288 288 181 231	1,948	5,918	Snow0	Dead 0	0	1,061	5,795		OK OK OK OK		

									LEI		UNNING WALL	3						
										Upper - 1								
				SEISM			WIND			GRA	VITY LOADING							
	%		# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp				
NORTH	50.0%	17.00	3,359			2,232									10.00	ft		
	29.4%	17.00	988	58	581	656	39	386	2,040	495	297	0	0	2,649	6	OK	None	OK
	16.1%	2.73	539	198		358	131								6	OK		
	13.4%	2.27	449	198		298	131								6	OK		
	11.8%	2.00	395	198	1,976	263	131	1,313	240	0	0	0	1,924	2,116	4	OK	MSTC40	OK
	11.8%	2.00	395	198	1,976	263	131	1,313	240	0	0	0	1,924	2,116	4	OK	MSTC40	OK
	47.1%	13.00	1,581	122	1,216	1,050	81	808	1,560	450	270	0	110	2,760	4	OK	MSTC28	OK
	28.1%	4.77	943	198		626	131								4	OK		
	19.0%	3.23	638	198		424	131								4	OK		
SOUTH	50.0%	21.98	3,359			2.232												
	37.5%	13.25	1,261	95	952	838	63	632	1.590	495	297	0	0	2.676	6	OK	None	OK
	10.9%	2.40	366	153		243	102		,						6	OK .		
	26.6%	5.85	895	153		594	102								6	OK		
	26.1%	8.23	876	106	1,064	582	71	707	988	0	0	0	849	1,639	6	OK	MSTC28	OK
	13.0%	2.86	438	153		291	102								6	OK		
	13.0%	2.86	438	153		291	102								6	OK		
	36.4%	13.00	1,223	94	940	812	62	625	1,560	450	270	0	0	2,553	6	OK	None	OK
	21.7%	4.77	729	153		484	102		,						6	OK		
	14.7%	3.23	493	153		328	102								6	OK		

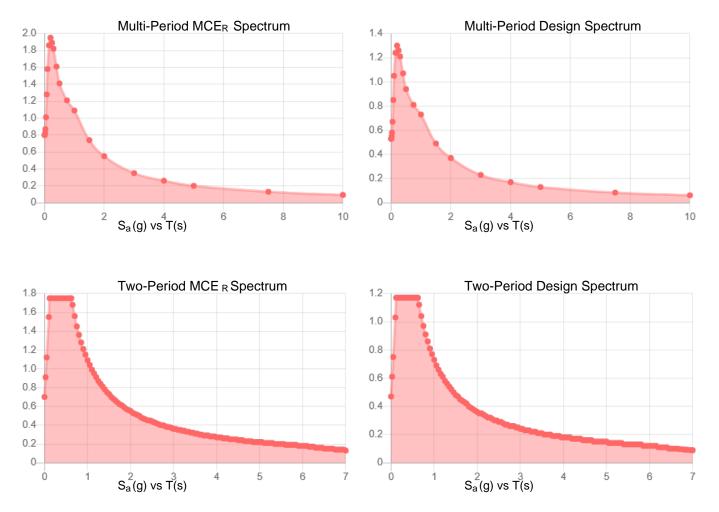
										Main - to	- Upper							
				SEISM	IIC		WIND			GRA	VITY LOADING	(plf)						
	%		# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp				
NORTH	50.0%	13.42	5,799			4,803									10.00	ft		
	40.4%	17.00	2,341	138	1,377	1,939	114	1,141	4,080	495	491	311	0	5,069	3	OK	None	OK
	20.3%	2.73	1,180	432		977	358								3	OK		
	20.0%	2.69	1,162	432		962	358								3	OK		
	59.6%	13.00	3,458	266	2,660	2,864	220	2,203	3,120	450	551	449	418	5,701	3	OK	HDU2	OK
	26.9%	3.61	1,562	432		1,294	358								3	OK		
	32.7%	4.39	1,896	432		1,570	358								3	OK		
0.0117711	50.00/																	
SOUTH	50.0%	24.48	5,799			4,803				105						011		011
	67.3%	13.25	3,904	295	2,946	3,234	244	2,440	3,180	495	449	243	957	5,593	4	OK	HDU2	OK
	9.8%	2.40	568	237		470	196								4	OK		
	23.9%	5.85	1,387	237		1,149	196								4	OK		
	33.6%	8.23	1,950	237	2,369	1,615	196	1,962	1,975	0	0	0	1,938	3,518	6	OK	HDU2	OK
	32.7%	13.00	1,895	146	1,458	1,570	121	1,208	3,120	450	422	243	0	4,346	6	OK	None	OK
	19.5%	4.77	1,130	237		936	196								6	OK		
	13.2%	3.23	765	237		634	196								6	OK		

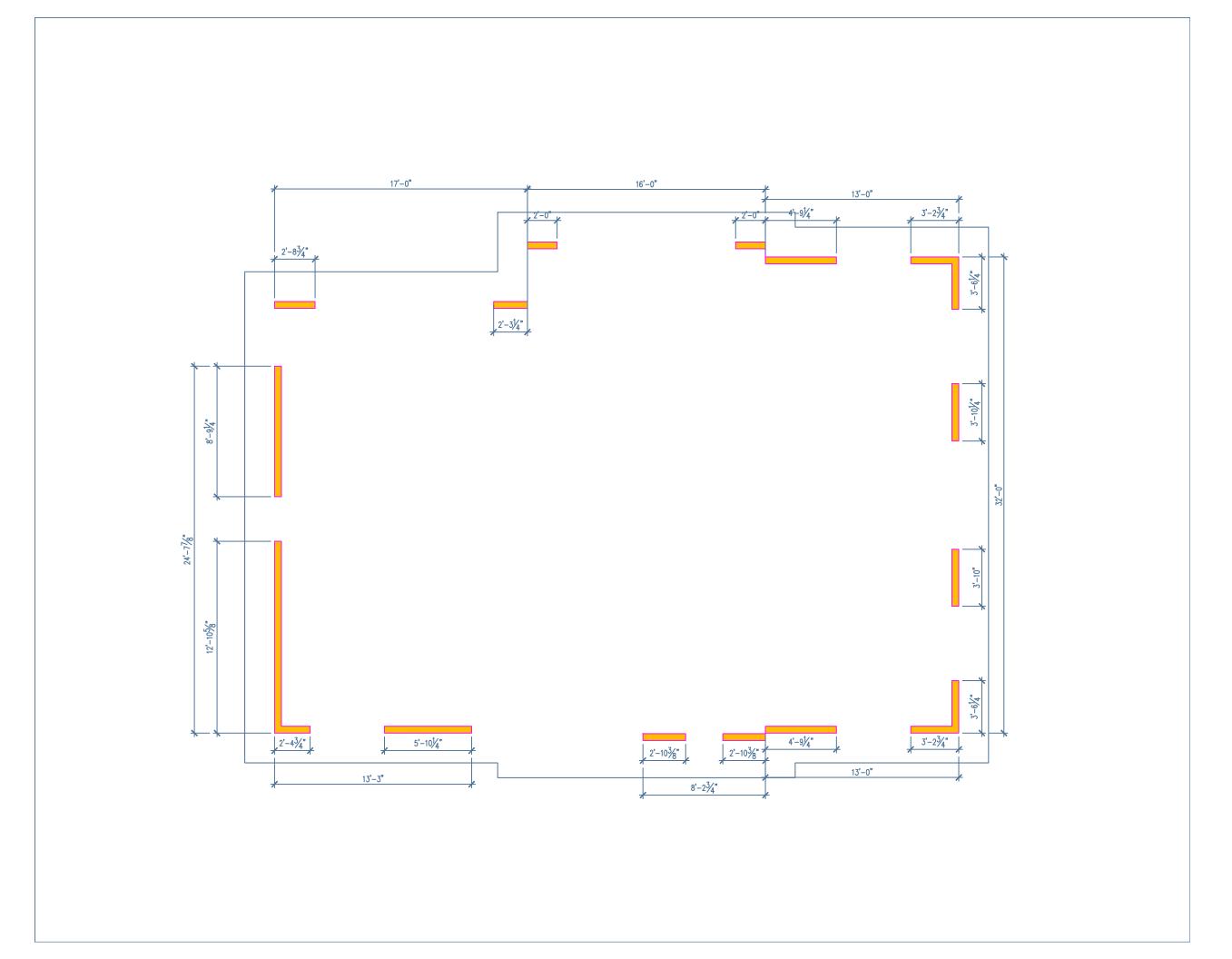


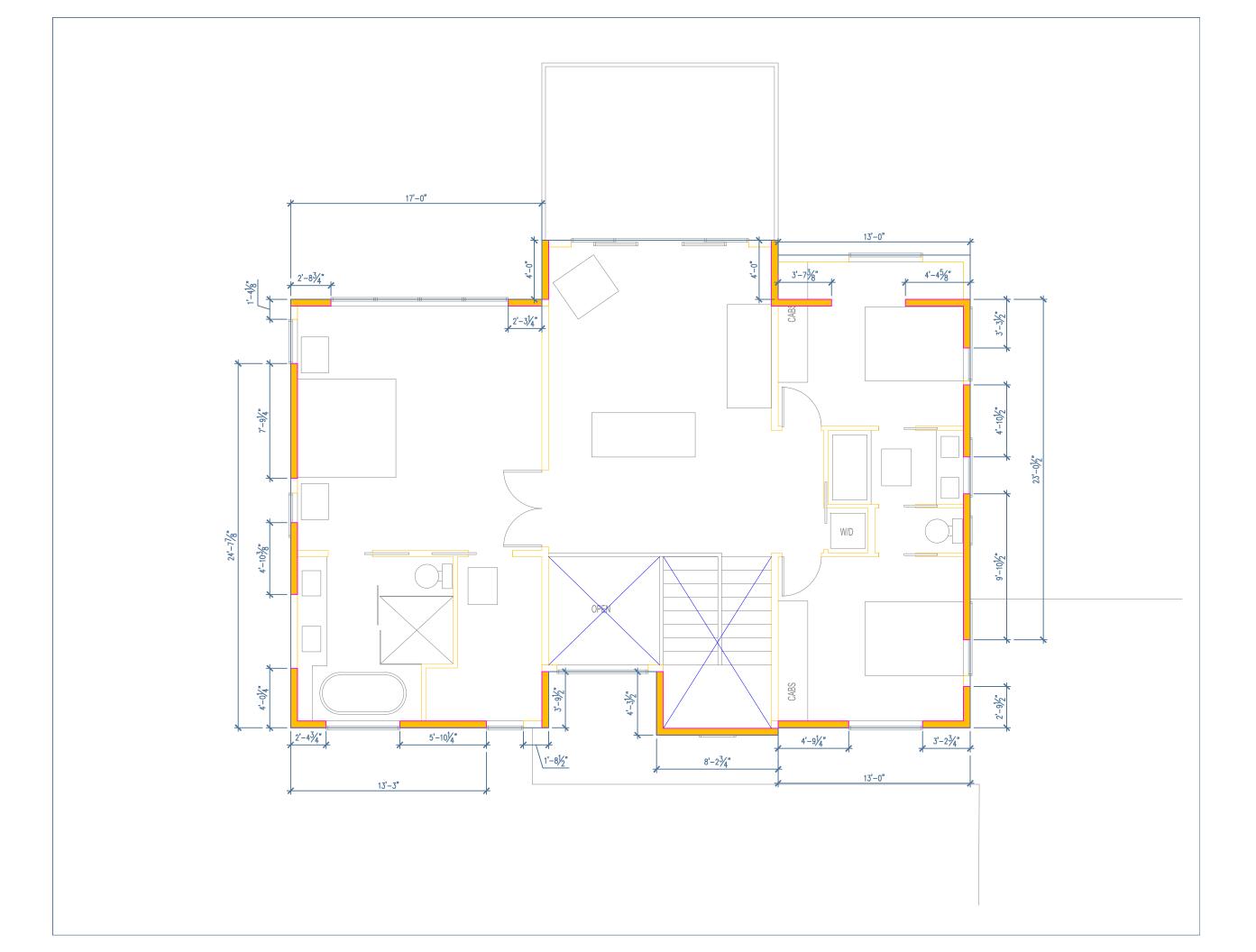
ASCE Hazards Report

Address:S2956 72nd Ave SERMercer Island, WashingtonS98040S

Standard:ASCE/SEI 7-22Risk Category:IISoil Class:CD


Latitude: 47.582987 Longitude: -122.242525 Elevation: 313.1704605890397 ft (NAVD 88)


Site Soil Class: Results:	CD			
PGA M:	0.73	T∟ :	6	
S _{MS} :	1.75	S _s :	1.56	
S _{M1} :	1.09	S ₁ :	0.64	
S _{DS} :	1.17	V _{S30} :	365	
S _{D1} :	0.73			


Seismic Design Category: D

 $\label{eq:mcercentrol} \begin{array}{l} \mathsf{MCE}_{\mathsf{R}} \mbox{ Vertical Response Spectrum} \\ \mbox{ Vertical ground motion data has not yet been made} \\ \mbox{ available by USGS.} \end{array}$

Design Vertical Response Spectrum Vertical ground motion data has not yet been made available by USGS.



WEST ELEVATION

1/4" = 1'-0"

SOUTH ELEVATION

6810 NE 149th St Kenmore, WA 206-427-7233 JOB TITLE Wu Chang

JOB NO. 248-2024	SHEET NO.	
CALCULATED BY JDA	DATE	3/5/24
CHECKED BY	DATE	

www.struware.com

Code Search

Code: ASCE 7

Occupancy:

Occupancy Group = R Residential

Risk Category & Importance Factors:

Risk Category =	II	
Wind factor =	1.00	use 0.60 NOTE: Output will be nominal wind pressures
Snow factor =	1.00	
Seismic factor =	1.00	

Type of Construction:

Fire Rating:

Ū	Roof =	0.0 hr
	R001 =	0.0 m
	Floor =	0.0 hr

Building Geometry:

6.00 / 12	26.6 deg
45.0 ft	
33.0 ft	
20.5 ft	
0.0 ft	
0.0 ft	
	45.0 ft 33.0 ft 20.5 ft 0.0 ft

Live Loads:

<u>Roof</u>	0 to 200 sf: 18 psf	use 25.0 psf
	200 to 600 sf: 25 psf	
	over 600 sf: 25 psf	

Floor:

Typical Floor		40 psf
Partitions		N/A
Partitions	N/A	
Partitions		N/A
Partitions	N/A	

6810 NE 149th St Kenmore, WA 206-427-7233 JOB TITLE Wu Chang

JOB NO. 24	8-2024	SHEET NO.	
CALCULATED BY JD	A	DATE	3/5/24
CHECKED BY		DATE	

Wind Loads :	ASCE 7			
Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure	110 mph 85.2 mph II B Enclosed Buildin +/-0.18	g		
Directionality (Kd)	0.85			
Kh case 1	0.701			
Kh case 2	0.628			
Type of roof	Gable			Z A Speed-up
Topographic Factor (F	(zt)			V(z)
· · · · · ·	2D Escarpment			V(Z) x(upwind) x(downwind)
Hill Height (H)	0.0 ft		H< 60ft;exp B	H/2
Half Hill Length (Lh)	39.4 ft		∴ Kzt=1.0	
Actual H/Lh =	0.00			
Use H/Lh =	0.00			STATION STATION STATION
Modified Lh =	39.4 ft			ESCARPMENT
From top of crest: x =	0.0 ft			
Bldg up/down wind?	upwind			V(z)
				Z Speed-up
H/Lh= 0.00	K ₁ =	0.000		
x/Lh = 0.00	K ₂ =	1.000		$\bigvee(Z)$ x(upwind) (downwind)
z/Lh = 0.52	K ₃ =	0.272		H/2
At Mean Roof Ht:				H/2
Kzt =	$(1+K_1K_2K_3)^2 =$	1.00		A + +
				2D RIDGE or 3D AXISYMMETRICAL HILL

00 - 5
20.5 ft
33.0 ft
30.0 ft

Flexible structure if natural frequenc	y < 1 Hz (T > 1 second).
However, if building h/B < 4 then pro	bably rigid structure (rule of thumb).
h/B = 0.62	Rigid structure

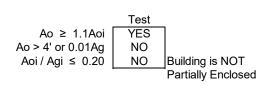
G = 0.85 Using rigid structure default

Rigio	I Structure	Flexible or Dyn	amically Se	nsitive St	ructure		
ē =	0.33	Natural Frequency $(\eta_1) =$	0.0 Hz				
$\ell = Z_{min} =$	320 ft 30 ft	Damping ratio (β) = /b =	0 0.45				
c = g _Q , g _v =	0.30 3.4	/α = Vz =	0.25 70.9				
$L_z =$	310.0 ft	N ₁ =	0.00				
Q =	0.91	R _n =	0.000				
$I_z =$	0.30	R _h =	28.282	η =	0.000	h =	20.5 ft
G =	0.87 use G = 0.85	R _B =	28.282	η =	0.000		
		R _L =	28.282	η =	0.000		
		g _R =	0.000				
		R =	0.000				
		G =	0.000				

JOB TITLE Wu Chang

6810 NE 149th St			
Kenmore, WA	JOB NO. 248-2024	SHEET NO.	
206-427-7233	CALCULATED BY JDA	DATE	3/5/24
	CHECKED BY	DATE	

Enclosure Classification


Test for Enclosed Building: A building that does not qualify as open or partially enclosed.

Test for Open Building:

All walls are at least 80% open. As ≥ 0.8 Ag

Test for Partially Enclosed Building:

	Input	
Ao	0.0	sf
Ag	0.0	sf
Aoi	0.0	sf
Agi	0.0	sf

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

 $Ao \ge 1.1Aoi$

Ao > smaller of 4' or 0.01 Ag Aoi / Agi ≤ 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):		0 cf
	Ri =	1.00

Altitude adjustment to constant 0.00256 (caution - see code) :

Altitude =	0 feet	Average Air Density =	0.0765 lbm/ft ³
Constant =	0.00256		

JOB TITLE Wu Chang

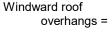
6810 NE 149th St			
Kenmore, WA	JOB NO. 248-2024	SHEET NO.	
206-427-7233	CALCULATED BY JDA	DATE	3/5/24
	CHECKED BY	DATE	

Wind Loads - MWFRS h≤60' (Low-rise Buildings) Enclosed/partially enclosed only

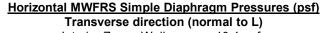
Kz = Kh (case 1) =	0.70
Base pressure (qh) =	11.1 psf
GCpi =	+/-0.18

Edge Strip (a) =	3.3 ft
End Zone (2a) =	6.6 ft
Zone 2 length =	16.5 ft

Wind Pressure Coefficients


	C	ASE A			CASE B	
		θ = 26.6 deg				
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.55	0.73	0.37	-0.45	-0.27	-0.63
2	-0.10	0.08	-0.28	-0.69	-0.51	-0.87
3	-0.45	-0.27	-0.63	-0.37	-0.19	-0.55
4	-0.39	-0.21	-0.57	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6				-0.29	-0.11	-0.47
1E	0.73	0.91	0.55	-0.48	-0.30	-0.66
2E	-0.19	-0.01	-0.37	-1.07	-0.89	-1.25
3E	-0.58	-0.40	-0.76	-0.53	-0.35	-0.71
4E	-0.53	-0.35	-0.71	-0.48	-0.30	-0.66
5E				0.61	0.79	0.43
6E				-0.43	-0.25	-0.61

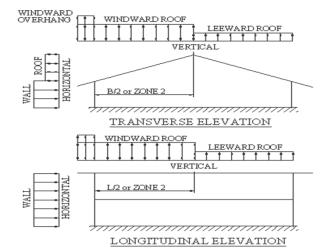
Nominal Wind Surface Pressures (psf)


1	8.1 4.1	-3.0	-7.0
2	0.9 -3.1	-5.6	-9.6
3	-3.0 -6.9	-2.1	-6.1
4	-2.3 -6.3	-3.0	-6.1 -7.0
5		6.4	2.4
6		-1.2	-5.2
1E	10.0 6.1	-3.3	-7.3
2E	-0.1 -4.1	-9.9	-13.8
2E 3E	-4.5 -8.5	-3.9	-7.9
4E	-3.9 -7.9	-3.3	-7.3
5E		8.7	4.8
6E		-2.8	-6.8

Parapet

Windward parapet = Leeward parapet = 0.0 psf (GCpn = +1.5) 0.0 psf (GCpn = -1.0)

7.7 psf (upward) add to windward roof pressure

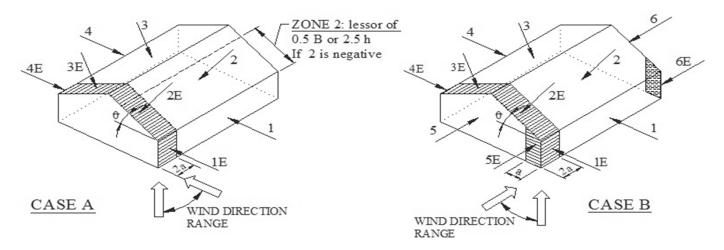


Interior Zone:	Wall	10.4 psf
	Roof	3.9 psf
End Zone:	Wall	14.0 psf
	Roof	4.4 psf
Longitudinal	directi	ion (parallel to L)

Longitudinal	direction	(parallel to L)
1	14/-11	70

Interior Zone:	Wall	7.6 pst
End Zone:	Wall	11.5 psf

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.



Atlas Consulting SE, Inc. 6810 NE 149th St Kenmore, WA 206-427-7233

JOB TITLE Wu Chang

JOB NO. 248-2024	SHEET NO.	
CALCULATED BY JDA	DATE	3/5/24
CHECKED BY	DATE	

Location of MWFRS Wind Pressure Zones

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram.

ASCE 7 -99 and ASCE 7-10 (& later)

6810 NE 149th St Kenmore, WA 206-427-7233

JOB	TITLE	Wu	Chang
-----	-------	----	-------

ЈОВ NO . 248-2024	SHEET NO.	
CALCULATED BY JDA	DATE	3/5/24
CHECKED BY	DATE	

Nominal Wind Pressures

Wind Loads - Components & Cladding : h <= 60'

Kh (case 1) =	0.70	h =	20.5 ft
Base pressure (qh) =	11.1 psf	a =	3.3 ft
Minimum parapet ht =	0.0 ft	GCpi =	+/-0.18
Roof Angle (θ) =	26.6 deg		
Type of roof = 0	Sable		

<u>Roof</u> GCp +/- GCpi Surface Pressure (psf) User input Area 10 sf 50 sf 100 sf 10 sf 50 sf 100 sf 10 sf 147 sf Negative Zone 1 -1.08 -1.01 -0.98 -12.0 -11.2 -10.8 -12.0 -10.8 Negative Zone 2 -1.88 -1.53 -1.38 -20.8 -16.9 -15.3 -20.8 -15.3 Negative Zone 3 -2.78 -2.36 -2.18 -30.8 -26.1 -24.1 -30.8 -24.1 Positive All Zones 0.68 0.54 0.48 10.0 10.0 10.0 10.0 10.0 Overhang Zone 2 -2.20 -2.20 -2.20 -24.3 -24.3 -24.3 -24.3 -24.3 Overhang Zone 3 -3.70 -2.86 -2.50 -41.0 -31.7 -27.7 -41.0 -27.7

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adjacent wall pressure reduced by internal pressure of 2 psf

Parapet [Varapet]

qp =	0.0	psf
------	-----	-----

CASE A = pressure towards building (pos) CASE B = pressure away from bldg (neg)

	Surfa	ce Pressure	e (psf)	User input
Solid Parapet Pressure	10 sf	100 sf	500 sf	40 sf
CASE A : Interior zone:	0.0	0.0	0.0	0.0
Corner zone:	0.0	0.0	0.0	0.0
CASE B : Interior zone:	0.0	0.0	0.0	0.0
Corner zone:	0.0	0.0	0.0	0.0

Walls	(GCp +/- GCp	Dİ	Surfa	ce Pressure	e (psf)	User	input
Area	10 sf	100 sf	500 sf	10 sf	100 sf	500 sf	10 sf	91 sf
Negative Zone 4	-1.28	-1.10	-0.98	-14.2	-12.2	-10.8	-14.2	-12.3
Negative Zone 5	-1.58	-1.23	-0.98	-17.5	-13.6	-10.8	-17.5	-13.7
Positive Zone 4 & 5	1.18	1.00	0.88	13.1	11.1	10.0	13.1	11.2

Atlas Consulting SE, Inc. 6810 NE 149th St Kenmore, WA

206-427-7233

JOB TITLE Wu Chang

JOB NO. 248-2024 CALCULATED BY JDA CHECKED BY

DATE

2a

а

3

<u>5</u> 3

DATE

3/5/24

Nominal Wind Pressures

2

1

 \bigcirc

2a

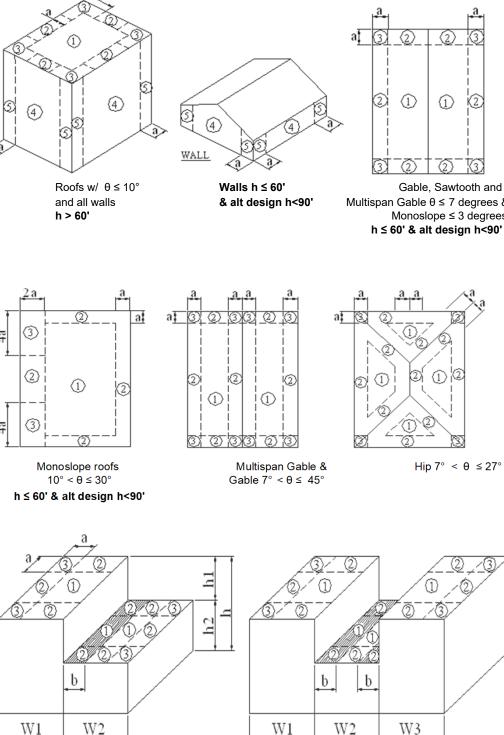
3

2

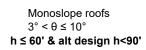
3

В

А


2

3


Ę

SHEET NO.

Location of C&C Wind Pressure Zones

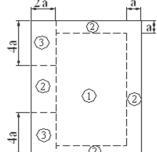
Gable, Sawtooth and Multispan Gable $\theta \leq 7$ degrees & Monoslope \leq 3 degrees

С

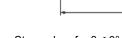
2

1

 $\overline{2}$


D

3


2

3 Sawtooth $10^\circ < \theta \le 45^\circ$ h ≤ 60' & alt design h<90'

3

W

Stepped roofs $\theta \leq 3^{\circ}$ h ≤ 60' & alt design h<90'

W

	2018 IBC		Date:	
ner:	JDA			
nt:	CenterLine			
ect:	2956 72nd Ave SE (Mercer Island)			
Line:	West (Upper to Roof)			
	L1 (ft)	Lo1(ft)	L2(ft)	
	V (Ib)	-		
			E T	
			habove(ft)	
			• •	
			hopen(ft) wall(ft)	
			hopen(f	
			E	
			herow(ft)	
			Ē	
	Letter 1 (1997)	L _{wall} (ft)		
		Shear Wall Calculat ening 1	Adj. Factor Method = 2bs/h	
	L1 8.77 ft h _a	1.00 ft	Wall Pier Aspect Ratio Adj. Factor	
	L2 12.89 ft h _o	5.00 ft	P1=h _o /L1= 0.57 N/A	
	h_{wall} 9.00 ft h_b	3.00 ft	P2=h _o /L2= 0.39 N/A	
	L _{wall} 24.66 ft Lo1	3.00 ft		
	1. Hold-down forces: H = Vh _{wall} /L _{wall}	1200 lbf	6. Unit shear beside opening	
	1. Hold-down lorces: $H = V H_{wall} L_{wall}$	1200 lbt	· · ·	152 plf
	2. Unit shear above + below opening		v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 =	152 plf 152 plf
	First opening: $va1 = vb1 = H/(h_a+h_b) =$	300 plf	VZ = (V/L)(12+L2)/LZ = Check v1*L1+v2*L2=V?	3287 lbf OK
	3. Total boundary force above + below openings		7. Resistance to corner forces	
	First opening: O1 = va1 x (Lo1) =	900 lbf	R1 = v1*L1 =	1331 lbf
			R2 = v2*L2 =	1956 lbf
	4. Corner forces			
	F1 = O1(L1)/(L1+L2) =	364 lbf	8. Difference corner force + resistance	
	F2 = O1(L2)/(L1+L2) =	535 lbf	R1-F1 =	967 lbf
			R2-F2 =	1421 lbf
	5. Tributary length of openings			
	T1 = (L1*L01)/(L1+L2) =	1.21 ft	9. Unit shear in corner zones	
	T2 = (L2*L01)/(L1+L2) =	1.79 ft	vc1 = (R1-F1)/L1 =	110 plf
			vc2 = (R2-F2)/L2 =	110 plf
	V (Ib)_			
	- (ID)			

Line 1	Line 2	Line 3	Line 4	
_	_	ſ	_	
	+ + + +			
	H(Ib)	V _{max}	H(Ib)	

	H(IP)	Vmax	H(lb)			
Check Summary of Shear Values for One Openin	ng					
Line 1: $vc1(h_a+h_b)+v1(h_o)=H?$				441	759	1200 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$			1200	441	759	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$			1200	441	759	0
Line 4: $vc2(h_a+h_b)+v2(h_o)=H?$				441	759	1200 lbf
		Design Summary*				
Req. Sheathing Capacity	300 plf	4-Term Deflection 0.21	.0 in.		3-Term Deflection	0.257 in.
Req. Strap Force	535 lbf 4-	Term Story Drift % 0.00	08 %		3-Term Story Drift %	0.010 %

Req. Strap Force 535 lbf Req. HD Force (H) 1200 lbf Req. Shear Wall Anchorage Force (v_{max}) 133 plf

de:	2018 IBC							Date:	
esigner:	JDA							-	
ient:	CenterLine								
oject:	2956 72nd Ave	SE (Mercer Isla	nd)						
all Line:	East (Upper to F	Roof)							
		L1(ft)	Lo1(ft)	L2(ft)	Lo2(ft)	L3(ft)	Lo3(ft)	L4(ft)	
	V (Ib)	n n		1			1	-	
									habove (ft)
									^a p
									<u>_</u>
									hopen (ft) seal(ft)
									hopen (1 heall(ft)
		-							1
									- E
									hbelow (ft)
									- +
					L _{wall} (ft)				
				9	hear Wall Calculation	Variables			
	V 3287 lbf		Opening 1	Opening	g2 (Opening 3	Adj. Fa	ctor Method =	2bs/h
	L1 3.50 ft	h _a 1	1.00 ft		00 ft h _a 3	1.00 ft	Wall Pier As	pect Ratio	Adj. Factor
	L2 3.83 ft	h _o 1	5.00 ft		00 ft h _o 3	5.00 ft	P1=h _o /L1=	1.43	N/A
	L3 3.83 ft	h _b 1	3.00 ft		00 ft h _b 3	3.00 ft	P2=h _o /L2=	1.31	N/A
	L4 3.50 ft	Lo1	5.00 ft	Lo2 7.3	27 ft Lo3	5.00 ft	P3=h_/L3=	1.31	N/A
h,	wall 9.00 ft						P4=h _o /L4=	1.43	N/A
L.	wall 31.93 ft								

Note to Designer: The width-to-height ratio of sheathing above or below the openings exceeds 6.5:1. Exercise caution when assuming fixity at corner regions, as assumed in this calculator.

1. Hold-down fo	orces: H = Vh _w	rall/L _{wall}	926 I	of	6. Unit s	hear beside opening		
2. Unit shear ab	ove + below	opening				v1 = (V/L)(L1	+T1)/L1 =	173 plf
	First openir	ng: va1 = vb1 = H/(h _a 1+h _b 1) =	232 p	lf		v2 = (V/L)(T2+L2	+T3)/L2 =	271 plf
S	Second openir	ng: va2 = vb2 = H/(h _a 2+h _b 2) =	232 p	lf		v3 = (V/L)(T4+L3	+T5)/L3 =	271 plf
	Third openir	ng: va3 = vb3 = H/(h _a 3+h _b 3) =	232 p	If		v4 = (V/L)(T6	,.	173 plf
						Check v1*L1+v2*L2+v3*L3+	v4*L4=V?	3287 lbf O
3. Total bounda		e + below openings to opening: O1 = va1 x (Lo1) =	1158	of.	7 Posist	ance to corner forces		
		d opening: O2 = va2 x (Lo2) =	1684		7. Resist		= v1*L1 =	606 lbf
		d opening: O2 = va2 x (LO2) = d opening: O3 = va3 x (LO3) =	1158				= v1*L1 = = v2*L2 =	1037 lbf
		u opening. OS – vas x (LOS) –	11201	Л			= v2*L2 = = v3*L3 =	1037 lbf
4. Corner forces							= v3*L3 = = v4*L4 =	1037 lbf 606 lbf
	,	F1 = O1(L1)/(L1+L2) =	553 I	of				000 151
		F2 = O1(L2)/(L1+L2) =	605 I	of	8. Differ	ence corner force + resistan	ce	
		F3 = O2(L2)/(L2+L3) =	842 I	of			R1-F1 =	53 lbf
		F4 = O2(L3)/(L2+L3) =	842 I	of		R	2-F2-F3 =	-410 lbf
		F5 = O3(L3)/(L3+L4) =	605 I			R	3-F4-F5 =	-410 lbf
		F6 = O3(L4)/(L3+L4) =	553 I	of			R4-F6 =	53 lbf
5. Tributary len	gth of openin	gs			9. Unit s	hear in corner zones		
	<u> </u>	T1 = (L1*L01)/(L1+L2) =	2.39	ft		vc1 = (R1	L-F1)/L1 =	15 plf
		T2 = (L2*Lo1)/(L1+L2) =	2.61	ft		vc2 = (R2-F2	2-F3)/L2 =	-107 plf
		T3 = (L2*Lo2)/(L2+L3) =	3.64	ft		vc3 = (R3-F4	1-F5)/L3 =	-107 plf
		T4 = (L3*Lo2)/(L2+L3) =	3.64	ft		vc4 = (R4	1-F6)/L4 =	15 plf
		T5 = (L3*Lo3)/(L3+L4) =	2.61	ft				
		T6 = (L4*Lo3)/(L3+L4) =	2.39	ft				
V (lb)								
Line 1	Line 2	Line 3	Line 4	Line 5	Line 6	Line 7	Line 8	
Li	5	±	ci	Ċ.	5	5	÷	

	I
	H(Ib)
Check Summa	ary of Shear Values for Three Openings
Line 1: vc1(h _a 1	1+h _b 1)+v1(h _o 1)=H?
Line 2: va1(h _a 1	$1+h_b1)-vc1(h_a1+h_b1)-v1(h_o1)=0?$
Line 3: vc2(h _a 1	$1+h_b1)+v2(h_o1)-va1(h_a1+h_b1)=0?$
Line 4: va2(h _a 2	2+h _b 2)-v2(h _o 2)-vc2(h _a 2+h _b 2)=0?
Line 5: va2(h _a 2	2+h _b 2)-vc3(h _a 2+h _b 2)-v3(h _o 2)=0?
Line 6: va3(h _a 3	3+h _b 3)-v3(h _o 3)-vc3(h _a 3+h _b 3)=0?
Line 7: va3(h _a 3	3+h _b 3)-vc4(h _a 3+h _b 3)-v4(h _o 3)=0?
Line 8: vc4(h _a 3	3+h _b 3)+v4(h _o 3)=H?

Req. Sheathing Capacity	271 plf
Req. Strap Force	842 lbf
Req. HD Force (H)	926 lbf
Req. Shear Wall Anchorage Force (v _{max})	103 plf

Design Summary* 4-Term Deflection 0.591 in. 4-Term Story Drift % 0.022 %

3-Term Deflection 3-Term Story Drift % 0.610 in. 0.023 %

H(Ib)

926 lbf

0

0

0

0

0

0

926 lbf

V_{max}

866

866

926

-428

1354

-428

866

866

61

61

1354

1354

-428

1354

61

61

926

-428

926

926

926

926

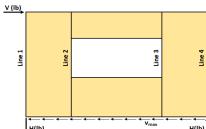
de:	2018 IBC						Dat	te: 3/4/2024	
signer:	JDA								
ent:	CenterLine								
ject:	2956 72nd Ave SE (Mercer Isla	ind)							
ll Line:	West (Main to Upper)								
		L1(ft)	Lo	1(ft)	L2(ft)	Lo2(ft)	L3(ft)		
	<u>_v (</u>		1	-()	· · · ·	(
		-						habove (ft)	
								h abov	
					-				
								hopen (ft) wall(ft)	
								hopen (hwall(ft)	
					F		-		
								w (ft)	
								h _{below} (ft)	
							_	↓	
					L _{wall} (ft)				
				Shear Wa	ll Calculation V	ariables			
	V 5746 lbf		Opening 1	1.2	Opening 2		dj. Factor Method		
	L1 7.77 ft L2 4.86 ft	h _a 1 h _o 1	2.00 ft 5.00 ft	h _a 2 h₀2	2.00 ft 5.00 ft	P1=h _o /L	ier Aspect Ratio .1= 0.64	Adj. Factor N/A	
	L2 4.86 ft	h _b 1	3.00 ft	h _b 2	3.00 ft	P2=h ₀ /L		N/A N/A	
	h _{wall} 10.00 ft	Lo1	3.00 ft	Lo2	5.00 ft	P3=h ₀ /L		N/A	
	L _{wall} 24.65 ft	I		-		-		ļ	
					_				
	1. Hold-down forces: H = Vh _w			2331 lbf	6.	Unit shear beside oper	-		
	2. Unit shear above + below of First opening	opening g: va1 = vb1 = H	/(h 1+h 1) =	466 plf			= (V/L)(L1+T1)/L1 //L)(T2+L2+T3)/L1		
	Second opening			466 plf			= (V/L)(T4+L3)/L3		
			, (a b)				_1+v2*L2+v3*L3=	•	к
	3. Total boundary force abov	e + below oper	nings						
	First	opening: O1 = v	va1 x (Lo1) =	1399 lbf	7.	Resistance to corner for	orces		
	Second	opening: O2 = v	va2 x (Lo2) =	2331 lbf			R1 = v1*L1		
							R2 = v2*L2		
	4. Corner forces	F1 - O1/I	1)/(L1+L2) =	860 lbf			R3 = v3*L3	3 = 1465 lbf	
			.1)/(L1+L2) = .2)/(L1+L2) =	538 lbf	8.	Difference corner force	e + resistance		
			2)/(L2+L3) =	1276 lbf			R1-F2	1 = 1381 lbf	
			3)/(L2+L3) =	1055 lbf			R2-F2-F3	3 = 226 lbf	
							R3-F4	4 = 409 lbf	
	5. Tributary length of opening		4) /// A · / 2)	1.05.6					
			1)/(L1+L2) = 1)/(L1+L2) =	1.85 ft 1.15 ft	9.	Unit shear in corner zo	vc1 = (R1-F1)/L1	1 = 178 plf	
			1)/(L1+L2) = 2)/(L2+L3) =	2.74 ft		M	vci = (R1-F1)/L. c2 = (R2-F2-F3)/L2		
			2)/(L2+L3) =	2.26 ft		v	vc3 = (R3-F4)/L3		
								•	
	<u>v (</u>	(b)							
			N	m	4	U.	e o		
		Line 1		Line 3	Line	4	Line 6		
					_				
		← ← ← +(Ib)					са стана с стана С стана с		
ck Summa	ary of Shear Values for Two Oper			_+-+-+			́ + (Ib)		
	ary of Shear Values for Two Oper 1+h _b 1)+v1(h _o 1)=H?					- • • • • • • • • • • • • • • • • • • •	каранананананананананананананананананана	1442	2331 lbf
e 1: vc1(h _a e 2: va1(h _a	1+h _b 1)+v1(h _o 1)=H? ₁ +h _b 1)-vc1(h _a 1+h _b 1)-v1(h _o 1)=O?					2331	H(Ib) 889 889	1442	0
e 1: vc1(h _a e 2: va1(h _a e 3: vc2(h _a	1+h _b 1)+v1(h _o 1)=H? ,1+h _b 1)-vc1(h _a 1+h _b 1)-v1(h _o 1)=O? ,1+h _b 1)+v2(h _o 1)-va1(h _a 1+h _b 1)=O?					2331 232	н(ib) 889 889 2099	1442 2331	0 0
e 1: vc1(h _a e 2: va1(h _a e 3: vc2(h _a e 4: va2(h _a	$\begin{array}{l} 1+h_b1)+v1(h_o1)=H?\\ j_1+h_b1)-vc1(h_a1+h_b1)-v1(h_o1)=0?\\ j_1+h_b1)+v2(h_o1)-va1(h_a1+h_b1)=0?\\ j_2+h_b2)-v2(h_o2)-vc2(h_a2+h_b2)=0? \end{array}$					2331 232 2331	889 889 2099 2099	1442 2331 232	0 0 0
2 1: vc1(h _a 2 2: va1(h _a 2 3: vc2(h _a 2 4: va2(h _a 2 5: va2(h _a	$\begin{array}{l} 1+h_b1)+v1(h_o1)=H?\\ 1+h_b1)-vc1(h_a1+h_b1)-v1(h_o1)=0?\\ 1+h_b1)+v2(h_o1)-va1(h_a1+h_b1)=0?\\ 2+h_b2)-v2(h_o2)-vc2(h_a2+h_b2)=0?\\ 2+h_b2)-vc3(h_a2+h_b2)-vc3(h_o2)=0? \end{array}$					2331 232	889 889 2099 2099 509	1442 2331 232 1822	0 0 0
2 1: vc1(h _a 2 2: va1(h _a 2 3: vc2(h _a 2 4: va2(h _a 2 5: va2(h _a	$\begin{array}{l} 1+h_b1)+v1(h_o1)=H?\\ j_1+h_b1)-vc1(h_a1+h_b1)-v1(h_o1)=0?\\ j_1+h_b1)+v2(h_o1)-va1(h_a1+h_b1)=0?\\ j_2+h_b2)-v2(h_o2)-vc2(h_a2+h_b2)=0? \end{array}$					2331 232 2331 2331	889 889 2099 2099	1442 2331 232	0 0 0
1: vc1(h _a 2: va1(h _a 3: vc2(h _a 4: va2(h _a 5: va2(h _a	$\begin{array}{l} 1+h_b1 \}+v1(h_o1)=H?\\ 1+h_b1 \}+v2(h_a1+h_b1)-v1(h_o1)=0?\\ 1+h_b1 \}+v2(h_o1)-va1(h_a1+h_b1)=0?\\ 2+h_b2)+v2(h_o2)-v2(h_a2+h_b2)=0?\\ 2+h_b2)+v2(h_a2)+v2(h_a2+h_b2)-v3(h_o2)=0?\\ 2+h_b2)+v3(h_o2)=H? \end{array}$	nings			gn Summa	2331 232 2331 2331	889 889 2099 2099 509	1442 2331 232 1822 1822	0 0 0 2331 lbf
2 1: vc1(h _a 2 2: va1(h _a 2 3: vc2(h _a 2 4: va2(h _a 2 5: va2(h _a	$\begin{array}{l} 1+h_b1)+v1(h_o1)=H?\\ 1+h_b1)-vc1(h_a1+h_b1)-v1(h_o1)=0?\\ 1+h_b1)+v2(h_o1)-va1(h_a1+h_b1)=0?\\ 2+h_b2)-v2(h_o2)-vc2(h_a2+h_b2)=0?\\ 2+h_b2)-vc3(h_a2+h_b2)-vc3(h_o2)=0? \end{array}$			4-Terr	gn Summa	2331 232 2331 2331	889 889 2099 2099 509	1442 2331 232 1822	0 0 0

de:	2018 IBC							Date	3/4/2024	
igner:	JDA							Date.	51 .1 2024	
ent:	CenterLine									
oject:	2956 72nd Ave SE (Mercer Islar	nd)							-	
all Line:	East (Main to Upper)									
	· · · · ·									
	× (1)	., [← L1 (ft)	Lo	1(ft)	L2(ft)	↓ Lo2 (ft)	• •	L3(ft)		
	<u>V (I</u> k	24							et t	
									habove (ft)	
									<u> </u>	
									2	
									hopen (ft) wall(ft)	
									hopen (hwall(ft)	
									h _{below} (ft)	
									Pere	
									-	
					L _{wall} (ft)					
		4		Shear Wa	Il Calculation	Variables		•		
	V 4976 lbf	ſ	pening 1	Jilear Wa	Opening 2	• 41 180163	Adi Far	ctor Method =	2bs/h	
	L1 3.29 ft	h _a 1	2.00 ft	h _a 2	2.00 ft		Nall Pier Asp		Adj. Factor	
	L2 4.88 ft	h _o 1	5.00 ft	h _o 2	5.00 ft		1=h _o /L1=	1.52	N/A	
	L3 9.88 ft	h _b 1	3.00 ft	h _b 2	3.00 ft		2=h _o /L2=	1.02	N/A	
	h _{wall} 10.00 ft	Lo1	2.50 ft	Lo2	2.50 ft	P3	3=h_/L3=	0.51	N/A	
	L _{wall} 23.05 ft			L.						
	1. Hold-down forces: H = Vh _{wal}	_{II} /L _{wall}		2159 lbf	e	6. Unit shear beside	e opening			
	2. Unit shear above + below of				_		v1 = (V/l	L)(L1+T1)/L1 =	282 plf	
	First opening:	va1 = vb1 = H/(h _a 1+h _b 1) =	432 plf		·	v2 = (V/L)(T2	2+L2+T3)/L2 =	319 plf	
	Second opening:	va2 = vb2 = H/(h _a 2+h _b 2) =	432 plf			v3 = (V/L	L)(T4+L3)/L3 =	252 plf	
						Chec	k v1*L1+v2*	*L2+v3*L3=V?	4976 lbf O	к
	3. Total boundary force above									
		pening: O1 = va		1079 lbf	7	 Resistance to cor 	rner forces			
	Second o	pening: O2 = va	2 x (Lo2) =	1079 lbf				R1 = v1*L1 =		
								R2 = v2*L2 =		
	4. Corner forces							R3 = v3*L3 =	2494 lbf	
		F1 = O1(L1		435 lbf				• .		
		F2 = O1(L2)		645 lbf	<u>-</u>	3. Difference corne	r force + res		402 (
		F3 = O2(L2)		357 lbf 723 lbf				R1-F1 = R2-F2-F3 =		
		F4 = O2(L3)	/(LZ+L3) =	725 101				R2-F2-F5 = R3-F4 =		
	5. Tributary length of opening	s						113-14 =	1772 101	
	<u>or montary rength or opening</u>	T1 = (L1*L01)	/(L1+L2) =	1.01 ft	9	. Unit shear in cor	ner zones			
		T2 = (L2*L01		1.49 ft	-			= (R1-F1)/L1 =	150 plf	
		T3 = (L2*Lo2		0.83 ft				R2-F2-F3)/L2 =		
		T4 = (L3*Lo2		1.67 ft				= (R3-F4)/L3 =		
	<u>V (Ib</u>	<u>)</u>								
		Line 1 Line 2		Line 3	Line 4		Line 5	Line 6		
		5 5		5	5		5	5		
		H(Ib)					V _{max}	H(Ib)		
ck Summ	ary of Shear Values for Two Openi	•						/1		
	a1+h _b 1)+v1(h _o 1)=H?							749	1410	2159 lbf
	$_{a}^{1+h_{b}}$)-vc1(h_{a} 1+ h_{b} 1)-v1(h_{o} 1)=0?					2	2159	749	1410	0
	$a_1 + h_b 1) + v2(h_b 1) - va1(h_a 1 + h_b 1) = 0?$						566	1593	2159	0
	$_{a}^{2}+h_{b}^{2})-v2(h_{a}^{2})-vc2(h_{a}^{2}+h_{b}^{2})=0?$						2159	1593	566	0
	$_{a}^{2}+h_{b}^{2})-vc3(h_{a}^{2}+h_{b}^{2})-v3(h_{o}^{2})=0?$						2159	897	1262	0
e 5: va2(h _a	$a^{2}+h_{b}^{2})+v^{3}(h_{o}^{2})=H?$					_		897	1262	2159 lbf
				Deci	gn Summ	arv*				
	Pog Shoothing Constitut	422 plf			-				2 Torm Deflection	0 5 9 1 1-
	Req. Sheathing Capacity Req. Strap Force	432 plf 723 lbf		4-Ter	n Deflection Story Drift %	0.605 in. 0.020 %			3-Term Deflection 3-Term Story Drift %	0.581 in. 0.019 %

	2018 IBC	Date:	
er:	JDA		
::	CenterLine		
ect:	2956 72nd Ave SE (Mercer Island)		
Line:	North (Upper to Roof)		
	L1(ft) L01	(ft) L2(ft)	
	V (Ib)		
		E T	
		†	
		h _{open} (ft) wall(ft)	
		hopen()	
		ź	
		E	
		hbelow(ft)	
		l l l l l l l l l l l l l l l l l l l	
	4	(ft)	
		Iculation Variables	
	V 967 lbf Opening 1 L1 2.73 ft ha 1.00 ft	Adj. Factor Method = 2bs/h Wall Pier Aspect Ratio Adj. Factor	
	$L2$ 2.69 ft h_0 5.00 ft	$P1=h_o/L1=$ 1.83 N/A	
	$h_{wall} = 9.00 \text{ ft}$ $h_b = 3.00 \text{ ft}$	$P2=h_0/L2=$ 1.86 N/A	
	L_{wall} 10.42 ft Lo1 5.00 ft	10,10	
	1. Hold-down forces: H = Vh/L	6. Unit shear beside opening	
	1. Hold-down forces: H = Vh _{wall} /L _{wall} 835 lbf	6. Unit shear beside opening $y_1 = (y/l)(1+T1)/l = 1$	178 plf
		v1 = (V/L)(L1+T1)/L1 =	178 plf 178 plf
	1. Hold-down forces: H = Vh _{wall} /L _{wall} 835 lbf 2. Unit shear above + below opening First opening: val = vb1 = H/(h _a +h _b) = 209 plf		178 plf 178 plf 967 lbf OK
	2. Unit shear above + below opening	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 =	178 plf
	2. Unit shear above + below openingFirst opening: va1 = vb1 = H/(h_a + h_b) =209 plf3. Total boundary force above + below openings	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	178 plf 967 lbf OK
	2. Unit shear above + below openingFirst opening: va1 = vb1 = H/(h_a+h_b) =209 plf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 =	178 plf 967 lbf OK 487 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h_a+h_b) = 209 plf 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 1044 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	178 plf 967 lbf OK
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 209 plf 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 1044 lbf 4. Corner forces 1044 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 =	178 plf 967 lbf OK 487 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 209 plf 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 1044 lbf 4. Corner forces F1 = O1(L1)/(L1+L2) = 526 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	178 plf 967 lbf OK 487 lbf 480 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 209 plf 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 1044 lbf 4. Corner forces 1044 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf
	2. Unit shear above + below opening First opening: val = vb1 = H/(h_a+h_b) = 209 plf 3. Total boundary force above + below openings First opening: O1 = val x (LO1) = 1044 lbf 4. Corner forces F1 = O1(L1)/(L1+L2) = 526 lbf F2 = O1(L2)/(L1+L2) = 518 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	178 plf 967 lbf OK 487 lbf 480 lbf
	2. Unit shear above + below opening 209 plf First opening: val = vb1 = H/(h _a +h _b) = 209 plf 3. Total boundary force above + below openings 1044 lbf First opening: O1 = val x (Lo1) = 1044 lbf 4. Corner forces F1 = O1(L1)/(L1+L2) = 526 lbf F2 = O1(L2)/(L1+L2) = 518 lbf 5. Tributary length of openings 5. Tributary length of openings	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf
	2. Unit shear above + below openingFirst opening: val = vb1 = H/(h_a+h_b) =209 plf3. Total boundary force above + below openingsFirst opening: O1 = val x (Lo1) =1044 lbfA. Corner forcesF1 = O1(L1)/(L1+L2) =526 lbfF2 = O1(L2)/(L1+L2) =526 lbf52 = O1(L2)/(L1+L2) =518 lbfT1 = (L1*L01)/(L1+L2) =2.52 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf
	2. Unit shear above + below opening 209 plf First opening: val = vb1 = H/(h _a +h _b) = 209 plf 3. Total boundary force above + below openings 1044 lbf First opening: O1 = val x (Lo1) = 1044 lbf 4. Corner forces F1 = O1(L1)/(L1+L2) = 526 lbf F2 = O1(L2)/(L1+L2) = 518 lbf 5. Tributary length of openings 5. Tributary length of openings	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf -14 plf
	2. Unit shear above + below opening: First opening: val = vb1 = H/(h_a+h_b) = 209 plf3. Total boundary force above + below openingsFirst opening: O1 = val x (Lo1) = 1044 lbf4. Corner forcesF1 = O1(L1)/(L1+L2) = 526 lbf F2 = O1(L2)/(L1+L2) = 518 lbf5. Tributary length of openingsT1 = (L1*LO1)/(L1+L2) = 2.52 ft T2 = (L2*LO1)/(L1+L2) = 2.48 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf
	2. Unit shear above + below openingFirst opening: val = vb1 = H/(h_a+h_b) =209 plf3. Total boundary force above + below openingsFirst opening: O1 = val x (Lo1) =1044 lbfA. Corner forcesF1 = O1(L1)/(L1+L2) =526 lbfF2 = O1(L2)/(L1+L2) =526 lbf52 = O1(L2)/(L1+L2) =518 lbfT1 = (L1*L01)/(L1+L2) =2.52 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf -14 plf
	2. Unit shear above + below opening: First opening: val = vb1 = H/(h_a+h_b) = 209 plf3. Total boundary force above + below openingsFirst opening: O1 = val x (Lo1) = 1044 lbf4. Corner forcesF1 = O1(L1)/(L1+L2) = 526 lbf F2 = O1(L2)/(L1+L2) = 518 lbf5. Tributary length of openingsT1 = (L1*LO1)/(L1+L2) = 2.52 ft T2 = (L2*LO1)/(L1+L2) = 2.48 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf -14 plf
	2. Unit shear above + below opening: First opening: val = vb1 = H/(h_a+h_b) = 209 plf3. Total boundary force above + below openingsFirst opening: O1 = val x (Lo1) = 1044 lbf4. Corner forcesF1 = O1(L1)/(L1+L2) = 526 lbf F2 = O1(L2)/(L1+L2) = 518 lbf5. Tributary length of openingsT1 = (L1*LO1)/(L1+L2) = 2.52 ft T2 = (L2*LO1)/(L1+L2) = 2.48 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf -14 plf
	2. Unit shear above + below opening: $First opening: val = vbl = H/(h_a+h_b) = 209 plf$ 3. Total boundary force above + below openings First opening: 01 = val x (L01) = 1044 lbf 4. Corner forces F1 = 01(L1)/(L1+L2) = 526 lbf F2 = 01(L2)/(L1+L2) = 518 lbf 5. Tributary length of openings T1 = (L1*L01)/(L1+L2) = 2.52 ft T2 = (L2*L01)/(L1+L2) = 2.48 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf -14 plf
	2. Unit shear above + below opening: $First opening: val = vbl = H/(h_a+h_b) = 209 plf$ 3. Total boundary force above + below openings First opening: 01 = val x (L01) = 1044 lbf 4. Corner forces F1 = 01(L1)/(L1+L2) = 526 lbf F2 = 01(L2)/(L1+L2) = 518 lbf 5. Tributary length of openings T1 = (L1*L01)/(L1+L2) = 2.52 ft T2 = (L2*L01)/(L1+L2) = 2.48 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf -14 plf
	2. Unit shear above + below opening: First opening: val = vb1 = H/(h_a+h_b) = 209 plf3. Total boundary force above + below openingsFirst opening: O1 = val x (Lo1) = 1044 lbf4. Corner forcesF1 = O1(L1)/(L1+L2) = 526 lbf F2 = O1(L2)/(L1+L2) = 518 lbf5. Tributary length of openingsT1 = (L1*LO1)/(L1+L2) = 2.52 ft T2 = (L2*LO1)/(L1+L2) = 2.48 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	178 plf 967 lbf OK 487 lbf 480 lbf -39 lbf -38 lbf -14 plf

Check Summary of Shear Values for One Opening	↓н(IÞ)	H(lb)			
Line 1: $vc1(h_a+h_b)+v1(h_o)=H?$			-57	892	835 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$		83	5 -57	892	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$		83	5 -57	892	0
Line 4: vc2(h _a +h _b)+v2(h _o)=H?			-57	892	835 lbf
	Des	ign Summary*			

		Design Summ	ary*		
Req. Sheathing Capacity	209 plf	4-Term Deflection	0.898 in.	3-Term Deflection	0.944 in.
Req. Strap Force	526 lbf	4-Term Story Drift %	0.033 %	3-Term Story Drift %	0.035 %
Req. HD Force (H)	835 lbf	-		-	
Req. Shear Wall Anchorage Force (v _{max})	93 plf				


Code:	2018 IBC			Date:
Designer:	JDA			
Client:	CenterLine			
Project:	2956 72nd Ave SE (Mercer Island)			
Wall Line:	North (Upper to Roof)			
	<u>v</u> (It	L1(ft) Lo1	L(ft) L2(ft)	
	<u>- (</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*	<u></u> 至1	
			habove(ft)	
			£	
			h _{open} (ft)	hwall(ft)
				£
			e [
			hbelow(ft)	
			£	
		4	hi(ft)	
			alculation Variables	a) ()
	V 1547 lbf L1 4.77 ft	Opening 1 ha 1.00 ft	Adj. Factor Method = Wall Pier Aspect Ratio	
	L1 4.77 ft L2 3.23 ft	h _a 1.00 ft h _o 5.00 ft	P1=h _o /L1= 1.05	Adj. Factor N/A
	LZ 3.23 IL	10 5.00 IL	11-10/L1- 1.05	IN/A
	h _{wall} 9.00 ft	h _b 3.00 ft	P2=h_/L2= 1.55	N/A

Note to Designer: The width-to-height ratio of sheathing above or below the openings exceeds 6.5:1. Exercise caution when assuming fixity at corner regions, as assumed in this calculator.

1. Hold-down forces: H = Vh _w	_{vall} /L _{wall}		696 lbf	6. Unit shea	ar beside opening	g		
						V/L)(L1+T1)/L1		
2. Unit shear above + below						V/L)(T2+L2)/L2		
First open	ing: va1 = vb1 = H/	(h _a +h _b) =	174 plf		Check	v1*L1+v2*L2=\	? 1547 lbf OK	
3. Total boundary force abov	e + below opening	s		7. Resistan	e to corner force	s		
First	opening: O1 = va1	x (Lo1) =	2088 lbf			R1 = v1*L1 R2 = v2*L2		
4. Corner forces						NZ - VZ LZ	- 025101	
	F1 = O1(L1)/	(L1+L2) =	1245 lbf	8. Differend	e corner force +	resistance		
	F2 = O1(L2)/		843 lbf			R1-F1	= -323 lbf	
		. ,				R2-F2	= -219 lbf	
5. Tributary length of opening								
	T1 = (L1*Lo1)/		7.16 ft	9. Unit shea	ar in corner zones		<u> </u>	
	T2 = (L2*Lo1)/	(L1+L2) =	4.85 ft			:1 = (R1-F1)/L1		
					vo	:2 = (R2-F2)/L2	= -68 plf	
	<u>V (lb</u>) 						
	-	-	2		4			
			Line 2	Line 3	Line 4			
		-						
		• •		← ← ← ← ← ←				
		↓н(іь)			H(lb)			
Check Summary of Shear Values for One Oper Line 1: vc1(h _a +h _b)+v1(h _a)=H?	ning					274	067	606 H (
						-271	967	696 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$					696	-271	967	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$					696	-271	967	0
Line 4: $vc2(h_a+h_b)+v2(h_o)=H?$						-271	967	696 lbf
			Design	Summary*				
Req. Sheathing Capacity	193 plf		4-Term De	flection 0.845 in.			3-Term Deflection	0.888 in.
Req. Strap Force	1245 lbf		4-Term Story	Drift % 0.031 %			3-Term Story Drift %	0.033 %
Req. HD Force (H)	696 lbf			E.	_			
Req. Shear Wall Anchorage Force (v _{max})	77 plf							

	2018 IBC		Date:	
r:	JDA			
	CenterLine			
::	2956 72nd Ave SE (Mercer Island)			
ne:	South (Upper to Roof)			
			1.0763	
	V (Ib)	Lo1(ft)	L2(ft)	
			£1 1	
			habove(ft)	
			£	
			hosed(ft)	
			herov(ft)	
		L _{wall} (ft)		
	V 1234 lbf	Shear Wall Calcu		
	$L1 = 2.40 \text{ ft}$ h_a	Opening 1 1.00 ft	Adj. Factor Method = 2bs/h Wall Pier Aspect Ratio Adj. Factor	
	L2 5.85 ft h _o	5.00 ft	P1=h ₀ /L1= 2.08 0.960	
	h_{wall} 9.00 ft h_b	3.00 ft	P2=h _o /L2= 0.85 N/A	
	L _{wall} 13.25 ft L01	5.00 ft		
	1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) =	838 lbf 210 plf	6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V?	150 plf 150 plf 1234 lbf OK
		210 ph		1234 151 01
	3. Total boundary force above + below openings		7. Resistance to corner forces	
	3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) =	1048 lbf	R1 = v1*L1 =	359 lbf
	First opening: O1 = va1 x (Lo1) =	1048 lbf		359 lbf 875 lbf
	First opening: O1 = va1 x (Lo1) = 4. Corner forces		R1 = v1*L1 = R2 = v2*L2 =	
	First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) =	305 lbf	R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	875 lbf
	First opening: O1 = va1 x (Lo1) = 4. Corner forces		R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 =	875 lbf 54 lbf
	First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) =	305 lbf	R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	875 lbf
	First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = 5. Tributary length of openings	305 lbf 743 lbf	R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 =	875 lbf 54 lbf
	First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) =	305 lbf	R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 =	875 lbf 54 lbf

Eones	
vc1 = (R1-F1)/L1 =	23 plf
vc2 = (R2-F2)/L2 =	23 plf

	н (Ib)	* max	H(lb)			
Check Summary of Shear Values for One Opening						
Line 1: $vc1(h_a+h_b)+v1(h_o)=H?$				90	748	838 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$			838	90	748	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$			838	90	748	0
Line 4: $vc2(h_a+h_b)+v2(h_o)=H?$				90	748	838 lbf
	De	sign Summary*				

Req. Sheathing Capacity	210 plf	4-Term Deflection	0.608 in.	3-Term Deflection	0.655 in.
Req. Strap Force	743 lbf	4-Term Story Drift %	0.023 %	3-Term Story Drift %	0.024 %
Req. HD Force (H)	838 lbf	-		-	
Req. Shear Wall Anchorage Force (v _{max})	93 plf				

	2018 IBC		Date:	
er:	JDA			
	CenterLine			
:	2956 72nd Ave SE (Mercer Island)			
ne:	South (Upper to Roof)			
	L1 (ft)	Lo1(ft) L2(ft)	
	V (Ib)			
			E 1	
			The second secon	
			hopen(ft) would ft)	
			hwall(ft)	
			E	
			hteriow(ft)	
		L _{wall} (fi	• ·	
	V 857 lbf		ulation Variables Adj. Factor Method = 2bs/h	
	L1 2.86 ft h _a	Opening 1 1.00 ft	Wall Pier Aspect Ratio Adj. Factor	
	$L2 2.86 \text{ ft} h_{o}$	8.00 ft	P1=h _o /L1= 2.80 0.715	
	h_{wall} 12.00 ft h_b	3.00 ft	$P2=h_{2}/L2= 2.80 0.715$	
	L _{wall} 8.22 ft Lo1	2.50 ft	0 100 00 10	
	1. Hold-down forces: H = Vh _{wall} /L _{wall}	1251 lbf	C. Unit share baside security	
	1. Hold-down lorces. H – Vilwali/Lwali	1251 101	6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 =	1E0 plf
	2. Unit shear above + below opening		VI = (V/L)(LI+II)/LI = V2 = (V/L)(T2+L2)/L2 =	150 plf 150 plf
	First opening: $va1 = vb1 = H/(h_a+h_b) =$	313 plf	v2 = (v/L)(12+L2)/L2 = Check v1*L1+v2*L2=V?	857 lbf OK
	3. Total boundary force above + below openings		7. Resistance to corner forces	
	First opening: O1 = va1 x (Lo1) =	782 lbf	R1 = v1*L1 =	429 lbf
			R2 = v2*L2 =	429 lbf
	4. Corner forces			
	F1 = O1(L1)/(L1+L2) =	391 lbf	8. Difference corner force + resistance	
	F2 = O1(L2)/(L1+L2) =	391 lbf	R1-F1 =	38 lbf
			R2-F2 =	38 lbf
	5. Tributary length of openings			
	T1 = (L1*L01)/(L1+L2) =	1.25 ft	9. Unit shear in corner zones	10.15
	T2 = (L2*Lo1)/(L1+L2) =	1.25 ft	vc1 = (R1-F1)/L1 =	13 plf
			vc2 = (R2-F2)/L2 =	13 plf
	V (Ib)			
	V (IB)			

V (lb)			
Line 1	Line 2	Line 3	Line 4
	н(њ)	V _{max}	H(lb)

		↓ H(ID)	H(Ib)			
Check Summary of Shear Values for One Ope	ening					
Line 1: $vc1(h_a+h_b)+v1(h_o)=H?$				52	1199	1251 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$			1251	52	1199	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$			1251	52	1199	0
Line 4: $vc2(h_a+h_b)+v2(h_o)=H?$				52	1199	1251 lbf
		Design Sumn	nary*			
Req. Sheathing Capacity	313 plf	4-Term Deflection	0.939 in.		3-Term Deflection	1.005 in.
Req. Strap Force	391 lbf	4-Term Story Drift %	0.026 %		3-Term Story Drift %	0.028 %

Req. Strap Force 391 lof Req. HD Force (H) 1251 lbf Req. Shear Wall Anchorage Force (v_{max}) 104 plf

	2018 IBC		Date:	
	JDA			
	CenterLine			
	2956 72nd Ave SE (Mercer Island)			
e:	South (Upper to Roof)			
	L1(f	t) Lo1(ft)	L2(ft)	
	V (lb)			
			E)	
			T T	
			hopen(ft) weak(ft)	
			hopen((t)	
			heiow(ft)	
			P erco	
		L _{wall} (ft)		
	la	Shear Wall Calcu		
	V 1196 lbf	Opening 1	Adj. Factor Method = 2bs/h	
	L1 4.77 ft h _a	1.00 ft	Wall Pier Aspect Ratio Adj. Factor	
	L2 3.23 ft h _o	5.00 ft	P1=h _o /L1= 1.05 N/A	
	h _{wall} 9.00 ft h _b	3.00 ft	P2=h _o /L2= 1.55 N/A	
	L _{wall} 13.00 ft Lo1	5.00 ft		
	1. Hold-down forces: H = Vh _{wall} /L _{wall}	828 lbf	6. Unit shear beside opening	
		828 lbf	v1 = (V/L)(L1+T1)/L1 =	150 plf
	2. Unit shear above + below opening		v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 =	150 plf
		828 lbf 207 plf	v1 = (V/L)(L1+T1)/L1 =	
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) =		v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V?	150 plf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings	207 plf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	150 plf 1196 lbf OK
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) =		v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 =	150 plf 1196 lbf OK 713 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings	207 plf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	150 plf 1196 lbf OK
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) =	207 plf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 =	150 plf 1196 lbf OK 713 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces	207 plf 1035 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 =	150 plf 1196 lbf OK 713 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) =	207 plf 1035 lbf 617 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	150 plf 1196 lbf OK 713 lbf 483 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = 5. Tributary length of openings	207 plf 1035 lbf 617 lbf 418 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 =	150 plf 1196 lbf OK 713 lbf 483 lbf 96 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = 5. Tributary length of openings T1 = (L1*Lo1)/(L1+L2) =	207 plf 1035 lbf 617 lbf 418 lbf 2.98 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones	150 plf 1196 lbf OK 713 lbf 483 lbf 96 lbf 65 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = 5. Tributary length of openings	207 plf 1035 lbf 617 lbf 418 lbf	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	150 plf 1196 lbf OK 713 lbf 483 lbf 96 lbf 65 lbf 20 plf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = 5. Tributary length of openings T1 = (L1*Lo1)/(L1+L2) =	207 plf 1035 lbf 617 lbf 418 lbf 2.98 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones	150 plf 1196 lbf OK 713 lbf 483 lbf 96 lbf 65 lbf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = 5. Tributary length of openings T1 = (L1*Lo1)/(L1+L2) =	207 plf 1035 lbf 617 lbf 418 lbf 2.98 ft	v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	150 plf 1196 lbf OK 713 lbf 483 lbf 96 lbf 65 lbf 20 plf

/ (lb)			
Line 1	Line 2	Line 3	Line 4
	н(Ib)	V _{max}	+ + + , H(lb)

+ - + - + - + - + - + - + - + - + - + -	+						
		80	748	828 lbf			
	828	80	748	0			
	828	80	748	0			
		80	748	828 lbf			
Design Summary*							
4-Term Deflection	0.553 in.		3-Term Deflection	0.600 in.			
4-Term Story Drift %	0.020 %		3-Term Story Drift %	0.022 %			
	рн(Ib) Design Summar 4-Term Deflection	+ H(Ib) H(Ib) 828 828 828 Design Summary* 4-Term Deflection 0.553 in.	+ н(lb) 80 828 80 828 80 828 80 80 80	+ н(lb) 80 748 828 80 748 828 80 748 828 80 748 80			

Req. Shear Wall Anchorage Force (v_{max}) 92 plf

	2018 IBC		Date:	
r:	JDA			
	CenterLine			
	2956 72nd Ave SE (Mercer Island)			
ie:	North (Main to Upper)			
		L1(ft) L01(ft)	L2(ft)	
	V (Ib) 📑			
			E t	
			I Ť I	
			hopen(ft) wall(ft)	
			hopen(It)	
			<i>£</i>	
			2	
			helow(ft)	
			Ē	
		L _{wall} (ft)		
	le le	Shear Wall Calcu		
	V 2320 lbf	Opening 1	Adj. Factor Method = 2bs/h	
	L1 2.73 ft	h _a 2.00 ft	Wall Pier Aspect Ratio Adj. Factor	
	L2 2.69 ft	h _o 5.00 ft	P1=h _o /L1= 1.83 N/A	
	h _{wall} 10.00 ft	h _b 3.00 ft	P2=h _o /L2= 1.86 N/A	
	L _{wall} 10.42 ft	Lo1 5.00 ft		
	1. Hold-down forces: H = Vh _{wall} /L _{wall}	2226 lbf	6. Unit shear beside opening	
			v1 = (V/L)(L1+T1)/L1 =	428 plf
	2. Unit shear above + below opening		v2 = (V/L)(T2+L2)/L2 =	428 plf
	2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a	+h _b) = 445 plf		
	First opening: va1 = vb1 = H/(h _a	+h _b) = 445 plf	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V?	428 plf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings		v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	428 plf 2320 lbf OK
	First opening: va1 = vb1 = H/(h _a		v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 =	428 plf 2320 lbf OK 1169 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	428 plf 2320 lbf ОК
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces	Lo1) = 2226 lbf	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 =	428 plf 2320 lbf OK 1169 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces F1 = O1(L1)/(L1	Lo1) = 2226 lbf +L2) = 1121 lbf	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	428 plf 2320 lbf OK 1169 lbf 1151 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces	Lo1) = 2226 lbf +L2) = 1121 lbf	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 =	428 plf 2320 lbf OK 1169 lbf 1151 lbf 47 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces F1 = O1(L1)/(L1 F2 = O1(L2)/(L1	Lo1) = 2226 lbf +L2) = 1121 lbf	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	428 plf 2320 lbf OK 1169 lbf 1151 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces F1 = O1(L1)/(L1 F2 = O1(L2)/(L1 5. Tributary length of openings	Lo1) = 2226 lbf +L2) = 1121 lbf +L2) = 1105 lbf	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 =	428 plf 2320 lbf OK 1169 lbf 1151 lbf 47 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces F1 = O1(L1)/(L1 F2 = O1(L2)/(L1	Lo1) = 2226 lbf +L2) = 1121 lbf +L2) = 1105 lbf +L2) = 2.52 ft	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 =	428 plf 2320 lbf OK 1169 lbf 1151 lbf 47 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces F1 = O1(L1)/(L1 F2 = O1(L2)/(L1 5. Tributary length of openings T1 = (L1*L01)/(L1	Lo1) = 2226 lbf +L2) = 1121 lbf +L2) = 1105 lbf +L2) = 2.52 ft	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones	428 plf 2320 lbf OK 1169 lbf 1151 lbf 47 lbf 46 lbf
	First opening: va1 = vb1 = H/(h _a 3. Total boundary force above + below openings First opening: O1 = va1 x (4. Corner forces F1 = O1(L1)/(L1 F2 = O1(L2)/(L1 5. Tributary length of openings T1 = (L1*L01)/(L1	Lo1) = 2226 lbf +L2) = 1121 lbf +L2) = 1105 lbf +L2) = 2.52 ft	v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 = 9. Unit shear in corner zones vc1 = (R1-F1)/L1 =	428 plf 2320 lbf OK 1169 lbf 1151 lbf 47 lbf 46 lbf 17 plf

V (lb)			
_			
Line 1	Line 2	Line 3	Line 4
		v _{max}	- , H(lb)

	↓ н(Ib)	Vmax	H(lb)			
Check Summary of Shear Values for One Openin	ng					
Line 1: $vc1(h_a+h_b)+v1(h_o)=H?$				86	2140	2226 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$			2226	86	2140	0
Line 3: va1(h _a +h _b)-vc2(h _a +h _b)-v1(h _o)=0?			2226	86	2140	0
Line 4: $vc2(h_a+h_b)+v2(h_o)=H?$				86	2140	2226 lbf
Design Summary*						
Req. Sheathing Capacity	445 plf 4-T	erm Deflection 1.777 i	in.		3-Term Deflection	1.368 in.
Req. Strap Force	1121 lbf 4-Terr	m Story Drift % 0.059	%		3-Term Story Drift %	0.046 %

Req. Strap Force 1121 lbf Req. HD Force (H) 2226 lbf Req. Shear Wall Anchorage Force (v_{max}) 223 plf

2018 IBC		Date:	
JDA			
CenterLine			
2956 72nd Ave SE (Mercer Island)			
North (Main to Upper)			
L1(ft)	Lo1(ft)	L2(ft)	
V (Ib)			
		E C	
		habove((t)	
		h _{open} (ft) wall(ft)	
		hopen(1	
		(£)	
		hbelow(ft)	
		+ _+	
	L _{wall} (ft)		
	Shear Wall Calcula	ation Variables	
	Opening 1	Adj. Factor Method = 2bs/h	
L1 3.61 ft h _a	2.00 ft	Wall Pier Aspect Ratio Adj. Factor	
L2 4.39 ft h _o	5.00 ft	P1=h _o /L1= 1.39 N/A	
h taaat h	2 00 ft	- ,	
h _{wall} 10.00 ft h _b	3.00 ft	P2=h _o /L2= 1.14 N/A	
h _{wall} 10.00 ft h _b L _{wall} 13.00 ft Lo1	3.00 ft 5.00 ft	- ,	
		- ,	
		- ,	
		- ,	
L _{wall} 13.00 ft Lo1	5.00 ft	P2=h _o /L2= 1.14 N/A	
		P2=h _o /L2= 1.14 N/A 6. Unit shear beside opening	478 plf
L _{wall} 13.00 ft Lo1	5.00 ft	P2=h _o /L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 =	428 plf 428 nlf
L _{wall} 13.00 ft Lo1	5.00 ft	P2=h _o /L2= 1.14 N/A 6. Unit shear beside opening	428 plf 428 plf 3426 lbf OK
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening	5.00 ft 2635 lbf	P2=h _o /L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)((L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 =	428 plf
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings	5.00 ft 2635 lbf	P2=h_o/L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	428 plf
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) =	5.00 ft 2635 lbf	P2=h_o/L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 =	428 plf 3426 lbf OK 1546 lbf
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) =	5.00 ft 2635 lbf 527 plf	P2=h_o/L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces	428 plf 3426 lbf OK
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces	5.00 ft 2635 lbf 527 plf 2635 lbf	P2=h_o/L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 =	428 plf 3426 lbf OK 1546 lbf
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) =	5.00 ft 2635 lbf 527 plf 2635 lbf 1189 lbf	P2=h _o /L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	428 plf 3426 lbf OK 1546 lbf 1880 lbf
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces	5.00 ft 2635 lbf 527 plf 2635 lbf	$P2=h_o/L2= 1.14 \text{ N/A}$ 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+V2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 =	428 plf 3426 lbf OK 1546 lbf 1880 lbf 357 lbf
$L_{wall} 13.00 \text{ ft} Lo1$ 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces $F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) =$	5.00 ft 2635 lbf 527 plf 2635 lbf 1189 lbf	P2=h _o /L2= 1.14 N/A 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance	428 plf 3426 lbf OK 1546 lbf 1880 lbf
L _{wall} 13.00 ft Lo1 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) =	5.00 ft 2635 lbf 527 plf 2635 lbf 1189 lbf	$P2=h_o/L2= 1.14 \text{ N/A}$ 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+V2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 =	428 plf 3426 lbf OK 1546 lbf 1880 lbf 357 lbf
$L_{wall} 13.00 \text{ ft} Lo1$ 1. Hold-down forces: H = Vh _{wall} /L _{wall} 2. Unit shear above + below opening First opening: va1 = vb1 = H/(h _a +h _b) = 3. Total boundary force above + below openings First opening: O1 = va1 x (Lo1) = 4. Corner forces F1 = O1(L1)/(L1+L2) = F2 = O1(L2)/(L1+L2) = 5. Tributary length of openings	5.00 ft 2635 lbf 527 plf 2635 lbf 1189 lbf 1446 lbf	$P2=h_o/L2= 1.14 \text{ N/A}$ 6. Unit shear beside opening v1 = (V/L)(L1+T1)/L1 = v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V? 7. Resistance to corner forces R1 = v1*L1 = R2 = v2*L2 = 8. Difference corner force + resistance R1-F1 = R2-F2 =	428 plf 3426 lbf OK 1546 lbf 1880 lbf 357 lbf

	H(Ib)	V _{max}	н(Ib)			
Check Summary of Shear Values for One Opening	·					
Line 1: vc1(h_a+h_b)+v1(h_o)=H?				494	2141	2635 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$			2635	494	2141	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$			2635	494	2141	0
Line 4: vc2(h _a +h _b)+v2(h _o)=H?				494	2141	2635 lbf
		Design Summar	v*			

Line 2

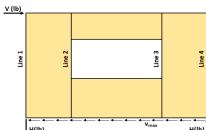
V (Ib)

Line 1

Req. Sheathing Capacity	527 plf	4-Term Deflection	1.389 in.	3-Term Deflection	0.979 in.			
Req. Strap Force	1446 lbf	4-Term Story Drift %	0.046 %	3-Term Story Drift %	0.033 %			
Req. HD Force (H)	2635 lbf	-		-				
Req. Shear Wall Anchorage Force (v _{max})	264 plf							

*The Design Summary assumes that the shear wall is designed as blocked.

Line 4


Line 3

le:	2018 IBC							Dat	e: 3/4/2024	
igner:	JDA									
nt:	CenterLine									
ject:	2956 72nd Ave SE (Mercer Isla	nd)								
l Line:	South (Main to Upper)									
		L1(ft)	Lo	1(ft)	L2(ft)	Lo2(i	ft)	L3(ft)		
	<u>v (</u>	ы							et t	
									habove (ft)	
								_	<u> </u>	
									(E)	
									hopen (ft) hwall(ft)	
								_		
									(L)	
									h _{below} (ft)	
					L _{wall} (ft)					
		-		Shear Wa	II Calculation	Variables		-		
	V 3868 lbf		pening 1	L 2	Opening 2	=		Factor Method		
	L1 2.40 ft L2 5.85 ft	h _a 1 h _o 1	2.00 ft 5.00 ft	h _a 2 h _o 2	2.00 ft 5.00 ft	_	P1=h _o /L1=	Aspect Ratio	Adj. Factor 0.960	-
	L3 8.23 ft	h _b 1	3.00 ft	h _b 2	3.00 ft		P2=h _o /L2=		N/A	
	h _{wall} 10.00 ft	Lo1	5.00 ft	Lo2	2.50 ft		P3=h_/L3=		N/A	
	L _{wall} 23.98 ft			-						
	1. Hold-down forces: H = Vh _{wa}	all/L _{wall}		1613 lbf	(5. Unit shear b	eside openir	g		
	2. Unit shear above + below c				-		-	U/L)(L1+T1)/L1	= 259 plf	F
		: va1 = vb1 = H/		323 plf)(T2+L2+T3)/L2		
	Second opening	: va2 = vb2 = H/	h _a 2+h _b 2) =	323 plf				(V/L)(T4+L3)/L3		
	3. Total boundary force above	+ helow oneni	nge			(Lheck v1*L1+	-v2*L2+v3*L3=\	/? 3868 lbf	OK
		opening: 01 = va	-	1613 lbf	-	. Resistance to	o corner for	es		
		opening: O2 = va		807 lbf	-			R1 = v1*L1	= 622 lbf	F
								R2 = v2*L2		
	4. Corner forces	F1 01/11	/// 1 - 1 - 2 \	400 166				R3 = v3*L3	= 1563 lbf	Ŧ
		F1 = O1(L1 F2 = O1(L2)/(L1+L2) =)/(L1+L2) =	469 lbf 1144 lbf	8	3. Difference co	orner force +	resistance		
		F3 = O2(L2		335 lbf	-			R1-F1	= 153 lbf	F
		F4 = O2(L3)/(L2+L3) =	471 lbf				R2-F2-F3		
	E Tributory length of energing							R3-F4	= 1092 lbf	F
	5. Tributary length of opening	T1 = (L1*L01)/(L1+L2) =	1.45 ft	c c). Unit shear in	corner zone	s		
		T2 = (L2*L01		3.55 ft	-			rc1 = (R1-F1)/L1	= 64 plf	F
		T3 = (L2*Lo2		1.04 ft				= (R2-F2-F3)/L2		
		T4 = (L3*Lo2)/(L2+L3) =	1.46 ft			١	rc3 = (R3-F4)/L3	= 133 plf	t
	<u>v (I</u>	b)								
		-		~						
		Line 1		Line 3	Line 4		Line 5	Line 6		
		_					_	_		
		н(іь)					 ✓ V_{max} 	H(lb)		
	ary of Shear Values for Two Oper	•								
	1+h _b 1)+v1(h _o 1)=H?							318	1295	1613 lbf
	$_{1}^{1+h_{b}1)-vc1(h_{a}1+h_{b}1)-v1(h_{o}1)=0?$						1613	318	1295	0
	$(1+h_b1)+v2(h_o1)-va1(h_a1+h_b1)=0?$ $(a+h_b2)-v2(h_o2)-vc2(h_a2+h_b2)=0?$						175 1613	1438 1438	1613 175	0 0
	$_{a}^{2}+h_{b}^{2}-vc3(h_{a}^{2}+h_{b}^{2})-v3(h_{o}^{2})=0?$						1613	663	950	0
	$(2+h_b^2) + v3(h_o^2) = H?$							663	950	1613 lbf
				Desi	gn Summ	ary*				
	Req. Sheathing Capacity	323 plf			m Deflection	0.657 in.			3-Term Deflection	0.668 in.
	Req. Strap Force	1144 lbf			Story Drift %	0.022 %			3-Term Story Drift %	
	Reg. HD Force	1613 lbf								

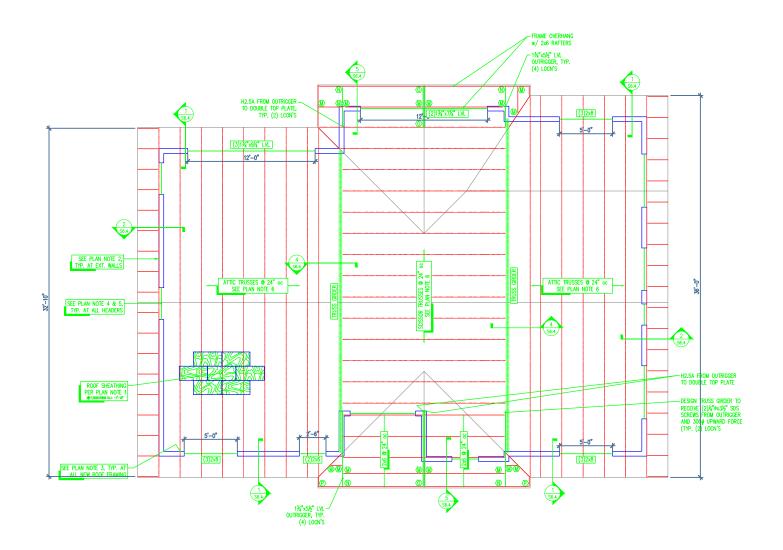
	2018 IBC		Date:	
r:	JDA			
	CenterLine			
	2956 72nd Ave SE (Mercer Island)			
e:	South (Main to Upper)			
	1470			
	V (Ib)	Lo1(f	ti) L2(ft)	
			£ 1	
			habove((t)	
			<u>_</u>	
			ε	
			h _{open} (ft) h _{weal} (ft)	
			4 4	
			https://www.fft	
		L _{wall} (ft)	
	L4		culation Variables	
	V 1878 lbf	Opening 1	Adj. Factor Method = 2bs/h	
	L1 4.77 ft h _a	2.00 ft	Wall Pier Aspect Ratio Adj. Factor	
	L2 3.23 ft h _o	2.50 ft	P1=h _o /L1= 0.52 N/A	
	h _{wall} 10.00 ft h _b	5.50 ft	P2=h _o /L2= 0.77 N/A	
	L _{wall} 13.00 ft L01	5.00 ft		
	1. Hold-down forces: H = Vh _{wall} /L _{wall}	1445 lbf	6. Unit shear beside opening	
			v1 = (V/L)(L1+T1)/L1 =	235 plf
	2. Unit shear above + below opening		v2 = (V/L)(T2+L2)/L2 =	235 plf
	First opening: va1 = vb1 = H/(h _a +h _b) =	193 plf	Check v1*L1+v2*L2=V?	1878 lbf OK
	3. Total boundary force above + below openings		7. Resistance to corner forces	
	First opening: O1 = va1 x (Lo1) =	963 lbf	R1 = v1*L1 =	1120 lbf
			R2 = v2*L2 =	758 lbf
	4. Corner forces			
	F1 = O1(L1)/(L1+L2) =	574 lbf	8. Difference corner force + resistance	
	F2 = O1(L2)/(L1+L2) =	389 lbf	R1-F1 =	546 lbf

5. Tributary length of openings		
	T1 = (L1*Lo1)/(L1+L2) =	2.98 ft
	T2 = (L2*Lo1)/(L1+L2) =	2.02 ft

	R1-F1 =	546 lbf
	R2-F2 =	369 lbf
9. Unit shear in cor	ner zones	
	vc1 = (R1-F1)/L1 =	114 plf
vc2 = (R2-F2)/L2 =		114 plf

	H(IP)	V _{max}	н(іь)			
Check Summary of Shear Values for One Opening						
Line 1: $vc1(h_a+h_b)+v1(h_o)=H?$				858	587	1445 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$			1445	858	587	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$			1445	858	587	0
Line 4: $vc2(h_a+h_b)+v2(h_o)=H?$				858	587	1445 lbf
	C	Design Summary*	:			
Req. Sheathing Capacity 235 p	lf 4	I-Term Deflection 0.61	l8 in.		3-Term Deflection	0.642 in.

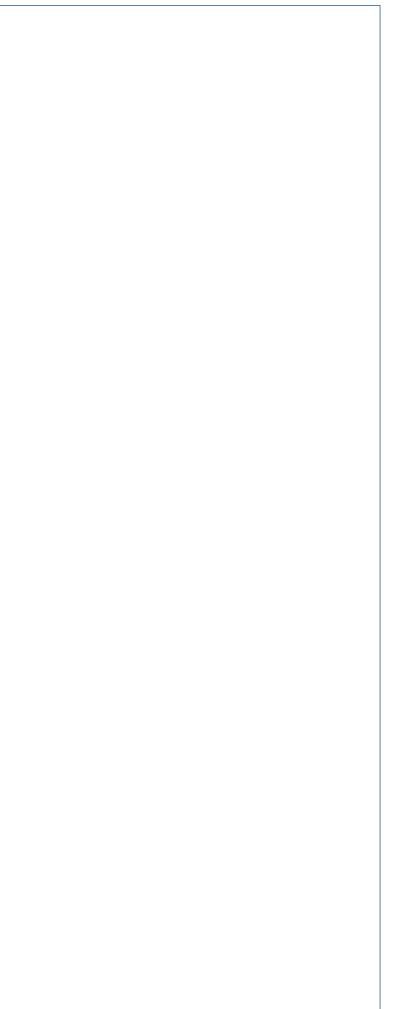
 Req. Strap Force
 574 lbf

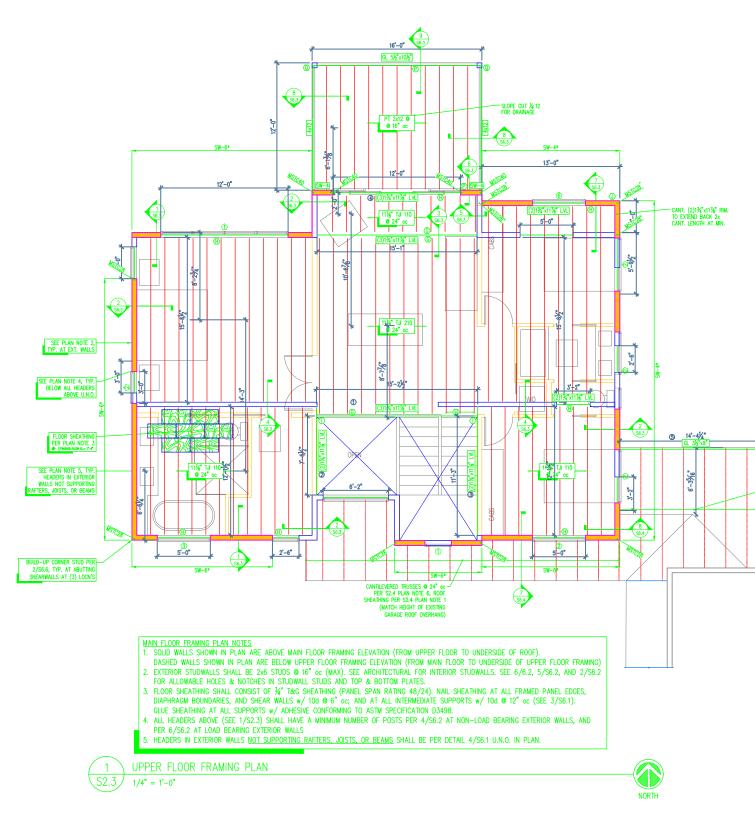

 Req. HD Force (H)
 1445 lbf

 Req. Shear Wall Anchorage Force (v_{max})
 144 plf

4-Term Story Drift % 0.021 %

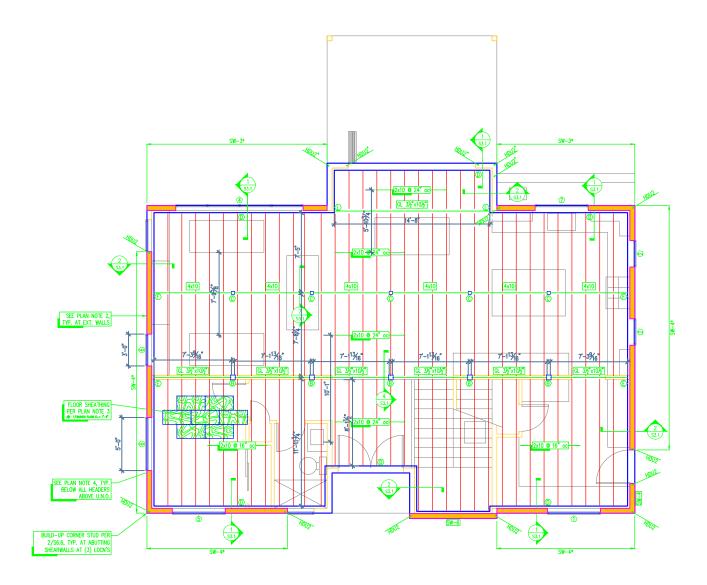
3-Term Story Drift % 0.021 %

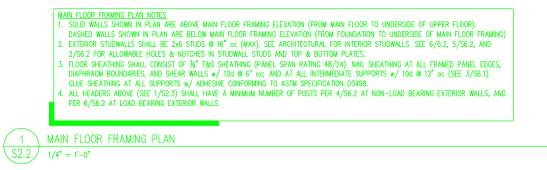

<u>LEGEND</u>	
	STRUCTURAL WOOD STUDWALL BELOW
•	POST BELOW
	HEADER or BEAM
	CONNECTOR PLATE WOOD TRUSS
—	ROOF FRAMING

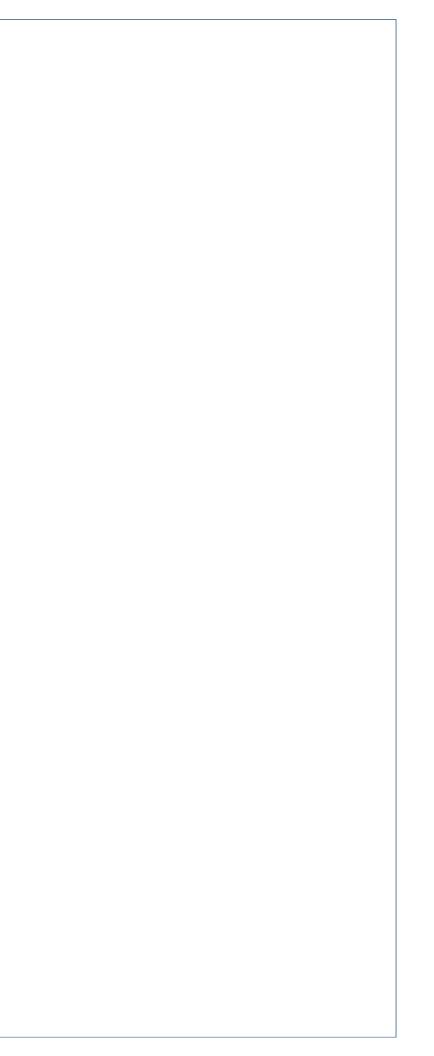

ROOF FRAMING PLAN NOTES 1. ROOF SHEATHING SHALL CONSIST OF % SHEATHING (PANEL SPAN RATING 32/16) NAILED AT ALL FRAMED PANEL EDGES, DIAPHRAGM BOUNDARIES, AND SHEAR WALLS W/ 10d @ 6" oc; AND AT ALL INTERMEDIATE SUPPORTS W/ 10d @ 12" oc (SEE 3/S6.2). 2. DASHED WALLS AND SHEAR WALLS SHOWN IN PLAN ARE BELOW ROOF FRAMING ELEVATION. 3. PROVIDE H2.5A HURICLARE TES AT EACH END OF ALL ROOF FRAMING. 4. ALL HEADERS SHALL HAVE A MINIMUM NUMBER OF POSTS PER 4/S6.1 AT NON-LOAD BEARING EXTERIOR WALLS, AND PER 6/S6.1 AT LOAD BEARING EXTERIOR WALLS. 5. HEADERS IN EXTERIOR WALLS NOT SUPPORTING RAFTERS, JOISTS, OR BEAMS SHALL BE PER DETAIL 4/S6.1 U.N.O. IN PLAN. 6. SEE GENERAL STRUCTURAL NOTE #9, 10, AND 22 FOR CONNECTOR PLATE ROOF TRUSS REQUIREMENTS.

NORTH

- 1ROOF FRAMING PLANS2.41/4" = 1'-0"




	STRUCTURAL WOOD STUDWALL BELOW	SW	DENOTES EXTENT OF SHEARWALL TYPE SW PER 1/S6.5
	STRUCTURAL WOOD STUDWALL	CW .	
	POST BELOW	* 	DENOTES STRAPPED SHEARWALL PER 7/S6.6, WITH @DENOTING STRAP PER SCHEDULE ABOVE & BELOW OPENING
×	POST		Schebole Above & becom or entito
	HEADER or BEAM	HOU	DENOTES SHEARWALL TENSION TIE PER 4/S6.6 or 8/S6.6
	JOIST	-	 DENOTES TRANSFER THE FROM THE ABOVE DENOTES THE ATOP STEEL BEAM, SEE 8/S6.6



	CONCRETE WALL BELOW	SW	DENOTES EXTENT OF SHEARWALL TYPE SW PER 1/S6.5
	CONCRETE WALL		,, , , , .
	STRUCTURAL WOOD STUDWALL	- <u>s₩*</u>	DENOTES STRAPPED SHEARWALL PER 7/S6.6, WITH @DENOTING STRAP PER
	POST BELOW		SCHEDULE ABOVE & BELOW OPENING
×	POST	HOU	DENOTES SHEARWALL TENSION THE PER 4/S6.6 or 8/S6.6
	HEADER or BEAM	MSTC	 DENOTES TRANSFER THE FROM THE ABOVE DENOTES THE ATOP STEEL BEAM, SEE 8/56.6

WuChang

Roof			
Member Name	Results (Max UTIL %)	Current Solution	Comments
5' Header	Passed (92% M)	3 piece(s) 2 x 8 DF No.2	
2.5' Header	Passed (55% M)	2 piece(s) 2 x 6 DF No.2	
12' Header (attic)	Passed (97% M)	3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL	
12' Header (scissor)	Passed (54% ΔT)	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
Upper	_		
Member Name	Results (Max UTIL %)	Current Solution	Comments
5' Header	Passed (79% R)	1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2.5' Header	Passed (58% R)	1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
12' Header	Passed (94% R)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
Floor: Joist (15'-6.5")	Passed (94% M)	1 piece(s) 11 7/8" TJI 210 @ 24" OC	
Floor: Joist (12'-1.5")	Passed (72% M)	1 piece(s) 11 7/8" TJI ® 110 @ 24" OC	
Deck Joist	Passed (80% M)	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
Deck Beam	Passed (92% ΔL)	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam	
Floor: Flush Beam at North Nook	Passed (100% ΔL)	3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
1	Passed (80% ΔL)	3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
2	Passed (52% V)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
3	Passed (57% V)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	
4	Failed (112% R)	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	Support 1 failed reaction check due to insufficient bearing capacity.
5	Passed (74% ΔT)	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam	
Main			
Member Name	Results (Max UTIL %)	Current Solution	Comments
Floor: Drop Beam w/ Bearing Wall Above	Passed (100% R)	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam	
Floor: Drop Beam	Passed (71% M)	1 piece(s) 4 x 10 DF No.1	
Floor: Drop Beam at North Nook	Passed (92% ΔT)	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam	
Floor: Joist (11'-11.75")	Passed (78% M)	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
Floor: Joist (8'-1.5")	Passed (54% M)	1 piece(s) 2 x 10 DF No.2 @ 24" OC	

ForteWEB Software Operator
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com
javiddabdi@yahoo.com

Job Notes

3/5/2024 8:44:07 PM UTC ForteWEB v3.7 File Name: WuChang

Roof, 5' Header 3 piece(s) 2 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2850 @ 0	4219 (1.50")	Passed (68%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2058 @ 8 3/4"	4502	Passed (46%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	3741 @ 2' 7 1/2"	4080	Passed (92%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.050 @ 2' 7 1/2"	0.262	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.081 @ 2' 7 1/2"	0.350	Passed (L/776)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 5' 3" System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.50"	1078	945	1418	2850	Blocking
2 - Stud wall - DF	1.50"	1.50"	1.50"	1078	945	1418	2850	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

d to carry no loads applied directly above them and the full load is applied to the member being designed

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	5' 3" o/c				
Bottom Edge (Lu)	5' 3" o/c				

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	8.3			
1 - Uniform (PSF)	0 to 5' 3" (Top)	18'	22.4	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 2.5' Header 2 piece(s) 2 x 6 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1364 @ 0	2813 (1.50")	Passed (48%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	785 @ 7"	2277	Passed (34%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	938 @ 1' 4 1/2"	1696	Passed (55%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.012 @ 1' 4 1/2"	0.138	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.019 @ 1' 4 1/2"	0.183	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 2' 9" System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supp				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.50"	513	454	681	1364	Blocking
2 - Stud wall - DF	1.50"	1.50"	1.50"	513	454	681	1364	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

carry no loads applied directly above them and the full load is

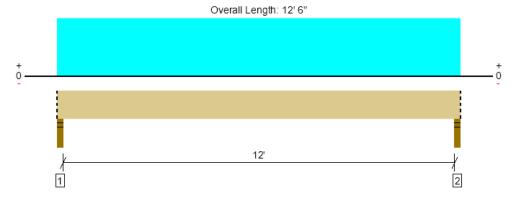
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	2' 9" o/c					
Bottom Edge (Lu)	2' 9" o/c					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 9"	N/A	4.2			
1 - Uniform (PSF)	0 to 2' 9" (Top)	16' 6"	22.4	20.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Roof, 12' Header (attic) 3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6262 @ 1 1/2"	9844 (3.00")	Passed (64%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5239 @ 1' 1/4"	10611	Passed (49%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	18793 @ 6' 3"	19327	Passed (97%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.480 @ 6' 3"	0.613	Passed (L/306)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.778 @ 6' 3"	0.817	Passed (L/189)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 12' 6" System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.91"	2394	2063	3094	6262	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.91"	2394	2063	3094	6262	Blocking
2 - Stud wall - DF 3.00" 3.00" 1.91" 2394 2063 3094 6262 Blocking								

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 1" o/c	
Bottom Edge (Lu)	12' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 6"	N/A	14.2			
1 - Uniform (PSF)	0 to 12' 6" (Top)	16' 6"	22.4	20.0	30.0	Default Load

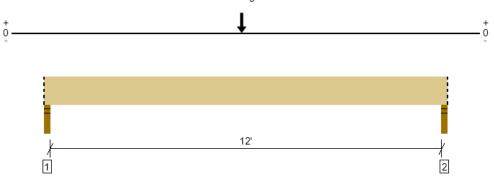
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes



Roof, 12' Header (scissor)

2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL

Overall Length: 12' 6"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	735 @ 1 1/2"	6563 (3.00")	Passed (11%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	729 @ 10 1/4"	5544	Passed (13%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	4271 @ 6' 1 1/2"	8182	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.280 @ 6' 1 1/2"	0.613	Passed (L/525)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.438 @ 6' 1 1/2"	0.817	Passed (L/336)		1.0 D + 1.0 S (All Spans)

Member Length : 12' 6" System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	276	459	735	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	267	441	707	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 6" o/c	
Bottom Edge (Lu)	12' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

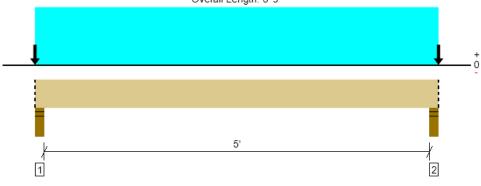
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 6"	N/A	7.4		
1 - Point (lb)	6' 1 1/2" (Top)	N/A	450	900	30 sf trib as point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	



Upper, 5' Header

1 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3899 @ 3"	4922 (4.50")	Passed (79%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	649 @ 1' 4 3/8"	3948	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1481 @ 2' 10 1/2"	8924	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.014 @ 2' 10 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.023 @ 2' 10 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 5' 9" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

	Bearing Length Loads to Supports (lbs)							
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	4.50"	4.50"	3.56"	1564	1695	1418	3899	Blocking
2 - Stud wall - DF	4.50"	4.50"	3.56"	1564	1695	1418	3899	Blocking
Blocking Papels are assumed to carry no los	de applied di	roctly above t	hom and the	full load is ar	policed to the mon	bor boing de	cianod	•

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 9" o/c	
Bottom Edge (Lu)	5' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 9"	N/A	6.1			
1 - Uniform (PSF)	0 to 5' 9" (Top)	6' 6 1/4"	25.0	40.0	-	Default Load
2 - Point (lb)	0 (Front)	N/A	1078	945	1418	Linked from: 5' Header, Support 1
3 - Point (lb)	5' 9" (Front)	N/A	1078	945	1418	Linked from: 5' Header, Support 2

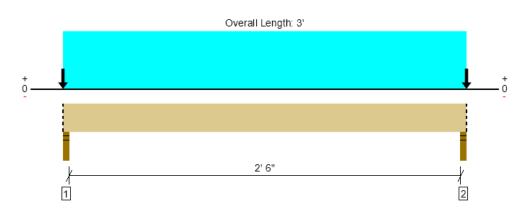
Member Notes

(converted from: Roof Flush Beam)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

3/5/2024 8:44:07 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: WuChang Page 6 / 24

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1911 @ 1 1/2"	3281 (3.00")	Passed (58%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	112 @ 1' 2 7/8"	3948	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	406 @ 1' 6"	8924	Passed (5%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 6"	0.092	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 6"	0.138	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 3' System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	B	earing Leng	th	Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.75"	767	845	681	1911	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.75"	767	845	681	1911	Blocking
Blocking Papels are assumed to carry no los	de applied di	ractly above t	hom and the	full load is ar	policed to the mon	hor hoing de	cianod	•

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' o/c	
Bottom Edge (Lu)	3' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3'	N/A	6.1			
1 - Uniform (PSF)	0 to 3' (Top)	6' 6 1/4"	25.0	40.0	-	Default Load
2 - Point (Ib)	0 (Front)	N/A	513	454	681	Linked from: 2.5' Header, Support 1
3 - Point (lb)	3' (Front)	N/A	513	454	681	Linked from: 2.5' Header, Support 2

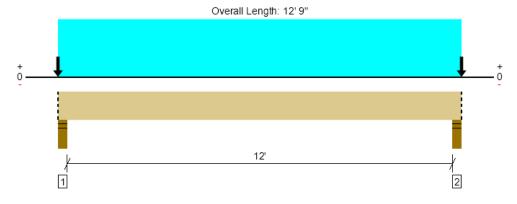
Member Notes

(converted from: Roof Flush Beam)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

3/5/2024 8:44:07 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: WuChang Page 7 / 24

2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9224 @ 3"	9844 (4.50")	Passed (94%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2741 @ 1' 4 3/8"	7897	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	10261 @ 6' 4 1/2"	17848	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.188 @ 6' 4 1/2"	0.408	Passed (L/783)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.312 @ 6' 4 1/2"	0.613	Passed (L/471)		1.0 D + 1.0 L (All Spans)

Member Length : 12' 9" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length Loads to Supports (lbs)							
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	4.50"	4.50"	4.22"	3783	4161	3094	9224	Blocking
2 - Stud wall - DF	4.50"	4.50"	4.22"	3783	4161	3094	9224	Blocking
Blocking Papels are assumed to carry no log			blocking					

are assumed to carry no loads applied directly above them and the full load is

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 9" o/c	
Bottom Edge (Lu)	12' 9" o/c	

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 9"	N/A	12.1			
1 - Uniform (PSF)	0 to 12' 9" (Top)	8' 2 3/4"	25.0	40.0	-	Default Load
2 - Point (lb)	0 (Front)	N/A	2394	2063	3094	Linked from: 12' Header (attic), Support 1
3 - Point (lb)	12' 9" (Front)	N/A	2394	2063	3094	Linked from: 12' Header (attic), Support 2

Member Notes

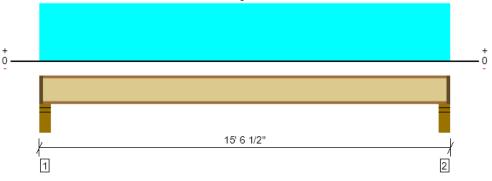
(converted from: Roof Flush Beam)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com



3/5/2024 8:44:07 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: WuChang Page 8 / 24

Upper, Floor: Joist (15'-6.5") 1 piece(s) 11 7/8" TJI ® 210 @ 24" OC

Overall Length: 15' 6 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	991 @ 4 1/2"	1460 (3.50")	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	951 @ 5 1/2"	1655	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3555 @ 7' 9 1/4"	3795	Passed (94%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.250 @ 7' 9 1/4"	0.370	Passed (L/709)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.407 @ 7' 9 1/4"	0.740	Passed (L/436)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	41	40	Passed		

Member Length : 15' 3" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	3.75"	1.75"	389	622	1010	1 3/4" Rim Board
2 - Stud wall - DF	5.50"	3.75"	1.75"	389	622	1010	1 3/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	3' 9" o/c						
Bottom Edge (Lu)	15' 3" o/c						
TIL initiate and and conclusional sectors							

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

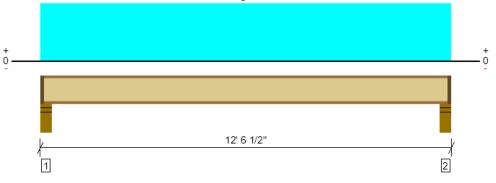
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 15' 6 1/2"	24"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com Job Notes

Upper, Floor: Joist (12'-1.5") 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

Overall Length: 12' 6 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	796 @ 4 1/2"	1375 (3.50")	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	756 @ 5 1/2"	1560	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	2259 @ 6' 3 1/4"	3160	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.123 @ 6' 3 1/4"	0.295	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.200 @ 6' 3 1/4"	0.590	Passed (L/707)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	50	40	Passed		

Member Length : 12' 3" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	3.75"	1.75"	314	502	815	1 3/4" Rim Board
2 - Stud wall - DF	5.50"	3.75"	1.75"	314	502	815	1 3/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	3' 9" o/c						
Bottom Edge (Lu)	12' 3" o/c						
TIL initiate and such a such most such	TTT / isite and units Maximum Allowable burging addition						

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 6 1/2"	24"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com Job Notes

Upper, Deck Joist 1 piece(s) 2 x 10 DF No.2 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	570 @ 1 3/4"	1406 (1.50")	Passed (41%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	493 @ 11"	1665	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1623 @ 5' 10 1/8"	2029	Passed (80%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.192 @ 5' 10 1/8"	0.285	Passed (L/713)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.240 @ 5' 10 1/8"	0.570	Passed (L/570)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 9 1/4" LVL beam	1.75"	Hanger ¹	1.50"	117	467	584	See note 1
2 - Hanger on 9 1/4" GLB beam	5.50"	Hanger ¹	1.50"	123	492	616	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	6' 6" o/c						
Bottom Edge (Lu)	11' 5" o/c						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5				
2 - Top Mount Hanger	THA213	1.75"	4-10d	2-10d	4-10dx1.5				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

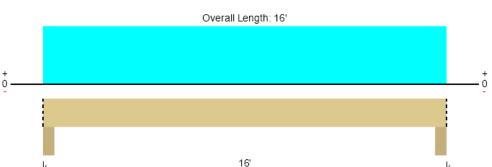
			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12'	16"	15.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	



3/5/2024 8:44:07 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: WuChang Page 11 / 24

Member Length : 11' 4 3/4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

Upper, Deck Beam 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3712 @ 4"	19663 (5.50")	Passed (19%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3094 @ 1' 4"	10203	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	13638 @ 8'	20213	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.469 @ 8'	0.511	Passed (L/392)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.604 @ 8'	0.767	Passed (L/304)		1.0 D + 1.0 L (All Spans)

Member Length : 16' System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

1

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	832	2880	3712	Blocking
2 - Column - DF	5.50"	5.50"	1.50"	832	2880	3712	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	16' o/c				
Bottom Edge (Lu)	16' o/c				
•Maximum allowable bracing intervals based on applied load.					

app

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 16'	N/A	14.0		
1 - Uniform (PSF)	0 to 16' (Top)	6'	15.0	60.0	Default Load

Member Notes

(converted from: Roof Flush Beam)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Upper, Floor: Flush Beam at North Nook 3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5541 @ 4"	12305 (3.75")	Passed (45%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4622 @ 1' 5 3/8"	11845	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	20732 @ 8'	26772	Passed (77%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.382 @ 8'	0.383	Passed (L/482)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.637 @ 8'	0.767	Passed (L/289)		1.0 D + 1.0 L (All Spans)

Member Length : 15' 8 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

				Loads to Supports (lbs)		
Available	Required	Dead	Floor Live	Factored	Accessories	
3.75"	1.69"	2257	3383	5641	1 3/4" Rim Board	
3.75"	1.69"	2257	3383	5641	1 3/4" Rim Board	
	3.75"	3.75" 1.69"	3.75" 1.69" 2257		3.75" 1.69" 2257 3383 5641	

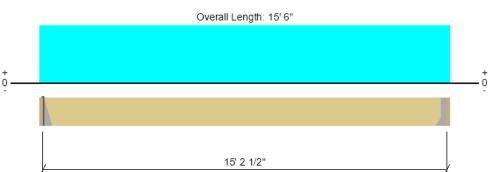
Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 4" o/c	
Bottom Edge (Lu)	15' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 3/4" to 15' 10 1/4"	N/A	18.2		
1 - Uniform (PSF)	0 to 16' (Top)	10' 6 7/8"	25.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233	
javiddabdi@yahoo.com	

Upper, 1 3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

	-				
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4417 @ 1 3/4"	5906 (1.50")	Passed (75%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3842 @ 1' 1 5/8"	11845	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	16793 @ 7' 9"	26772	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.303 @ 7' 9"	0.380	Passed (L/602)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.508 @ 7' 9"	0.760	Passed (L/359)		1.0 D + 1.0 L (All Spans)

Member Length : 15' 2 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

2

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

1

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 7/8" LVL beam	1.75"	Hanger ¹	1.50"	1815	2683	4499	See note 1
2 - Hanger on 11 7/8" LVL beam	1.75"	Hanger ¹	1.50"	1815	2683	4499	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	15' 3" o/c				
Bottom Edge (Lu)	15' 3" o/c				
Maximum alloughle brasing intervals based on applied lead					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	Tie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Face Mount Hanger	HHUS5.50/10	3.00"	N/A	30-16d	10-16d	
	с <u>с нин</u> 1	C 11				

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 3/4" to 15' 4 1/4"	N/A	18.2		
1 - Uniform (PSF)	0 to 15' 6" (Top)	8' 7 7/8"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

3/5/2024 8:44:07 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: WuChang Page 14 / 24

Upper, 2 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Overall Length: 9' 1"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4264 @ 8' 9"	8203 (3.75")	Passed (52%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4135 @ 7' 7 5/8"	7897	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5401 @ 7' 5 1/2"	17848	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.041 @ 4' 10 15/16"	0.215	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.070 @ 4' 10 7/8"	0.429	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 11 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Load	ls to Supports (
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	476	642	1117	Blocking
2 - Stud wall - DF	5.50"	3.75"	1.95"	1750	2526	4276	1 3/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 11" o/c	
Bottom Edge (Lu)	8' 11" o/c	

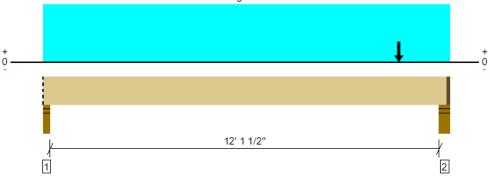
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 11 1/4"	N/A	12.1		
1 - Uniform (PSF)	0 to 9' 1" (Top)	1' 4"	25.0	40.0	Default Load
2 - Point (lb)	7' 5 1/2" (Front)	N/A	1815	2683	Linked from: 1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	



Upper, 3 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Overall Length: 12' 10 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4658 @ 12' 6 1/2"	8203 (3.75")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4530 @ 11' 5 1/8"	7897	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5912 @ 11' 1 1/4"	17848	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.096 @ 6' 11 1/4"	0.309	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.166 @ 6' 11"	0.619	Passed (L/896)		1.0 D + 1.0 L (All Spans)

Member Length : 12' 8 3/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Load	ls to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	478	619	1097	Blocking
2 - Stud wall - DF	5.50"	3.75"	2.13"	1920	2751	4671	1 3/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 9" o/c	
Bottom Edge (Lu)	12' 9" o/c	

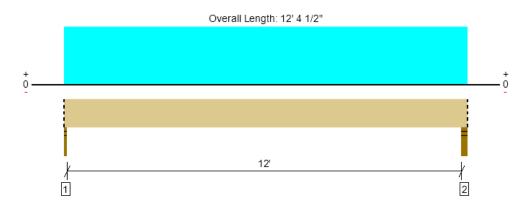
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 8 3/4"	N/A	12.1		
1 - Uniform (PSF)	0 to 12' 10 1/2" (Top)	1' 4"	25.0	40.0	Default Load
2 - Point (lb)	11' 3" (Front)	N/A	1815	2683	Linked from: 1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job N
Javid Abdi Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	



Member Length : 12' 4 1/2" System : Floor

Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

Upper, 4 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Support 1 failed reaction check due to insufficient bearing capacity.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3679 @ 0	3281 (1.50")	Failed (112%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3010 @ 1' 1 3/8"	7897	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	11268 @ 6' 1 1/2"	17848	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.255 @ 6' 1 1/2"	0.306	Passed (L/576)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.343 @ 6' 1 1/2"	0.613	Passed (L/429)		1.0 D + 1.0 L (All Spans)

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.68"	942	2737	3679	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.72"	962	2793	3754	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 5" o/c	
Bottom Edge (Lu)	12' 5" o/c	

Maximum allowable bracing intervals based on applied load.

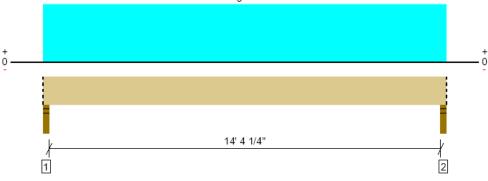
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 4 1/2"	N/A	12.1		
1 - Uniform (PSF)	0 to 12' 4 1/2" (Top)	2'	25.0	40.0	Default Load
2 - Uniform (PSF)	0 to 12' 4 1/2" (Top)	6' 1 3/8"	15.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233
iaviddabdi@vahoo.com


Job Notes

Upper, 5 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

Overall Length: 14' 10 1/4"

LDF

1.15

1.15

Load: Combination (Pattern)

1.0 D + 1.0 S (All Spans)

Member Length : 14' 10 1/4" System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021

> Design Methodology : ASD Member Pitch : 0/12

PASSED

Deflection criteria: LL (L/240) and TL (L/180)

Design Results

Shear (lbs)

Member Reaction (lbs)

Pos Moment (Ft-lbs)

Live Load Defl. (in)

Total Load Defl. (in)

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 14' 7 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

Actual @ Location

2006 @ 1 1/2"

1735 @ 1'

7199 @ 7' 5 1/8"

0.420 @ 7' 5 1/8"

0.722 @ 7' 5 1/8"

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Result

Passed (31%)

Passed (27%)

Passed (66%)

Passed (L/417)

Passed (L/243)

Allowed

6563 (3.00")

6400

10868

0.730

0.974

Applicable calculations are based on NDS.

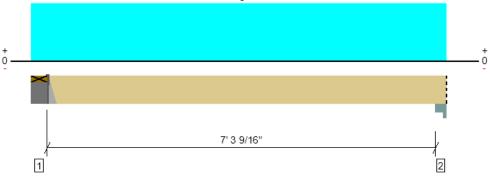
	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	839	1166	2006	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	839	1166	2006	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	14' 10" o/c				
Bottom Edge (Lu)	14' 10" o/c				
•Maximum allowable bracing intervals based on applied load.					

m allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 14' 10 1/4"	N/A	7.7		
1 - Uniform (PSF)	0 to 14' 10 1/4" (Top)	6' 3 3/8"	16.8	25.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	l

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6348 @ 8"	6348 (2.79")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4851 @ 1' 6 1/2"	6493	Passed (75%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	11778 @ 4' 4 1/2"	12863	Passed (92%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.109 @ 4' 4 1/2"	0.247	Passed (L/815)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.192 @ 4' 4 1/2"	0.371	Passed (L/463)		1.0 D + 1.0 L (All Spans)

Member Length : 7' 9 1/16" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 7' 5 1/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X DF plate	8.00"	Hanger ¹	2.79"	3222	4261	7482	See note 1
2 - Column Cap - steel	5.50"	5.50"	3.04"	2982	3936	6918	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 9" o/c					
Bottom Edge (Lu)	7' 9" o/c					
-Maximum alloughle brasing integrals brased on applied load						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	8" to 8' 5 1/16"	N/A	8.9		
1 - Uniform (PSF)	0 to 8' 5 1/16" (Top)	10' 1"	25.0	40.0	Default Load
2 - Uniform (PSF)	0 to 8' 5 1/16" (Top)	14' 3"	25.0	40.0	Default Load
3 - Uniform (PSF)	0 to 8' 5 1/16" (Front)	10'	12.0	-	Studwall

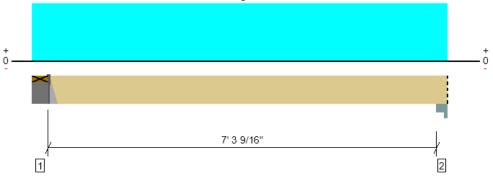
ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes



3/5/2024 8:44:07 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: WuChang Page 20 / 24

Main, Floor: Drop Beam 1 piece(s) 4 x 10 DF No.1

Overall Length: 8' 5 1/16"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

	-				
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1920 @ 8"	3281 (1.50")	Passed (59%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1521 @ 1' 5 1/4"	3885	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3562 @ 4' 4 1/2"	4991	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.055 @ 4' 4 1/2"	0.247	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.090 @ 4' 4 1/2"	0.371	Passed (L/990)		1.0 D + 1.0 L (All Spans)

Member Length : 7' 9 1/16" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X DF plate	8.00"	Hanger ¹	1.50"	888	1372	2259	See note 1
2 - Column Cap - steel	5.50"	5.50"	1.50"	825	1267	2092	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 9" o/c					
Bottom Edge (Lu)	7' 9" o/c					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Top Mount Hanger	BA3.56/9.25	3.00"	6-10dx1.5	4-10dx1.5	2-10dx1.5		
Defende werden festiven weter and instructi		- f - II					

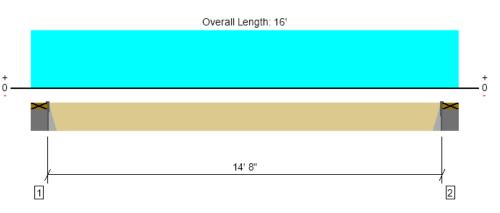
Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	8" to 8' 5 1/16"	N/A	8.2		
1 - Uniform (PSF)	0 to 8' 5 1/16" (Top)	7' 10"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


 ForteWEB Software Operator
 Job Notes

 Javid Abdi
 Javid Abdi

 Atlas Consulting Engineers
 (206) 427-7233

 javiddabdi@yahoo.com
 Javid Abdi

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2876 @ 8"	3413 (1.50")	Passed (84%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2533 @ 1' 6 1/2"	6493	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	10545 @ 8'	12863	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.404 @ 8'	0.489	Passed (L/436)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.672 @ 8'	0.733	Passed (L/262)		1.0 D + 1.0 L (All Spans)

Member Length : 14' 8" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 14' 8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X DF plate	8.00"	Hanger ¹	1.50"	1245	1887	3131	See note 1
2 - Hanger on Single 2X DF plate	8.00"	Hanger ¹	1.50"	1245	1887	3131	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	14' 8" o/c	
Bottom Edge (Lu)	14' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

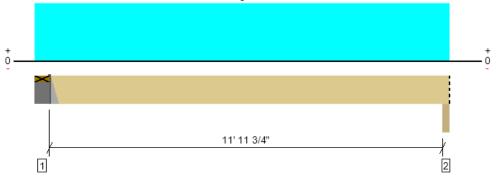
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	8" to 15' 4"	N/A	8.9		
1 - Uniform (PSF)	0 to 16' (Top)	5' 10 3/4"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Main, Floor: Joist (11'-11.75") 1 piece(s) 2 x 10 DF No.2 @ 16" OC

Overall Length: 12' 10 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	523 @ 7 1/4"	1406 (1.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	456 @ 1' 4 1/2"	1665	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1576 @ 6' 7 5/8"	2029	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.161 @ 6' 7 5/8"	0.302	Passed (L/902)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.261 @ 6' 7 5/8"	0.603	Passed (L/555)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

Member Length : 12' 3 1/4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

· Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X DF plate	7.25"	Hanger ¹	1.50"	221	354	575	See note 1
2 - Beam - DF	3.50"	3.50"	1.50"	208	333	541	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 11" o/c					
Bottom Edge (Lu)	12' 3" o/c					

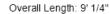
Maximum allowable bracing intervals based on applied load.

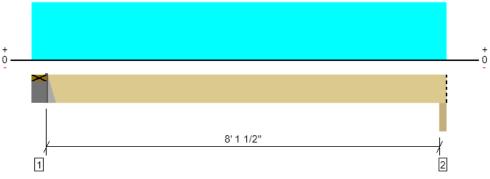
Connector: Simpson Strong-Tie					
Support Model Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Top Mount Hanger JB210A 2.00"	4-10dx1.5	2-10dx1.5	2-10dx1.5		

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 10 1/2"	16"	25.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Main, Floor: Joist (8'-1.5") 1 piece(s) 2 x 10 DF No.2 @ 24" OC

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	534 @ 7 1/4"	1406 (1.50")	Passed (38%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	433 @ 1' 4 1/2"	1665	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1095 @ 4' 8 1/2"	2029	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.052 @ 4' 8 1/2"	0.205	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.084 @ 4' 8 1/2"	0.410	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X DF plate	7.25"	Hanger ¹	1.50"	235	377	612	See note 1
2 - Beam - DF	3.50"	3.50"	1.50"	216	345	561	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	8' 5" o/c					
Bottom Edge (Lu)	8' 5" o/c					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	JB210A	2.00"	4-10dx1.5	2-10dx1.5	2-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 1/4"	24"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

3/5/2024 8:44:07 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: WuChang Page 24 / 24

Member Length : 8' 5" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD